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Nowadays, there is an increasing need for sensitive real-time measurements of various analytes and monitoring of industrial
products and environmental processes. Herein, we describe a fluorescence spectrometer in continuous flow mode in which the
sample is fed to the flow cell using a peristaltic pump.)e excitation beam is introduced to the sample chamber by an optical fiber.
)e fluorescence emitted upon excitation is collected at the right angle using another optical fiber and then transmitted to the
fluorescence spectrometer which utilizes an array detector. )e array detection, as a key factor in process analytical chemistry,
made the fluorescence spectrometer suited for multiwavelength detection of the fluorescence spectrum of the analytes. After
optimization of the experimental parameters, the system has been successfully employed for sensitive determination of four
fluoroquinolone antibiotics such as ciprofloxacin, ofloxacin, levofloxacin, and moxifloxacin. )e linear dynamic ranges of four
fluoroquinolones were between 0.25 and 20 μg·mL− 1, and the detection limit of the method for ciprofloxacin, ofloxacin, lev-
ofloxacin, and moxifloxacin were 81, 36, 35, and 93 ng·mL− 1, respectively. Finally, the proposed system is carried out for de-
termination of fluoroquinolones in some pharmaceutical formulations.

1. Introduction

)eProcess Analytical Chemistry (PAC) is the application of
analytical chemistry using specific techniques, algorithms,
and sampling equipment which addresses the problems of
chemical processes [1, 2]. In traditional analytical process,
sampling was carried out manually, and then these samples
were transferred to quality control laboratories [3]. Some-
times this approach was harmful, dangerous and also ex-
pensive, and ultimately did not result in good data in terms
of accuracy. Also, in terms of time, it could not adequately
demonstrate the process conditions.)e delay in the analysis
results prevented real-time and online analysis. Over time, it
became clear that real-time measurements would provide

time information in a process, so instead of offline mea-
surements, continuous flow analytical devices were applied
for online monitoring [4–8]. In continuous monitoring,
direct connection of the sampling system, and the system
itself, enables us to automate and control the collection of
data and their analysis [5, 9]. )e Process Analytical
Technology (PAT) [10, 11] was defined in 2004 by the Food
and Drug Administration (FDA) to support innovation in
the industry quality control. PAT has many applications in
the pharmaceutical and antibiotics manufacturing [12–25],
chemical [26, 27], petrochemical [28], and food industries
[29–33]. In addition, there are many recent progress in real-
time monitoring of cultivations in bioreactors and cell
culture process [34–41], fermentation [42, 43] and biological
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process [44], and electrochemical [45, 46] and protein pu-
rification [47]. Using PAT enables us to get a deeper un-
derstanding of the process. )e process knowledge can
increase the product integrity and production efficiency
while it can reduce impurities and undesirable crops and
costs which all lead to cost reduction eventually. By having
additional information and knowledge about a process, it is
possible to understand the parameters that influence the
process and its quality control [15, 48].

Fluoroquinolones are among the most important anti-
bacterial agents which were developed in the 80s and are
now widely used in medicine and veterinary medicine [49].
)erefore, several analytical procedure has been reported for
determination of fluoroquinolones including high-perfor-
mance liquid chromatography (HPLC) [50–62], spectro-
photometry [63], fluorimetry [64–73], flow-injection
based on chemiluminescence [74–76], chemiluminescence
[77, 78], terbium-sensitized luminescence [79], solid-phase
spectrofluorimetry [80, 81], capillary electrophoresis [82,
83], convenient magnetic solid-phase extraction procedure
coupled with capillary electrophoresis [84], solid-phase
microextraction coupled with liquid chromatography-tan-
dem mass spectrometry [85], liquid-liquid microextraction
[86], polarography [87], and colorimetry [88] But, there is no
report for application of PAT or PAC for online monitoring
of fluoroquinolones.

Hence, the main objective of this study is to develop a
method for chemical analysis and monitoring of four fluo-
roquinolones (ciprofloxacin, ofloxacin, levofloxacin, and
moxifloxacin) at continuous flow mode using a fiberoptic
fluorescence array detecting system in pharmaceutical products.

2. Materials and Methods

2.1. Chemicals. Fluoranthene (a poly-aromatic hydrocarbon
composition) with a purity of 98% was purchased from
Sigma-Aldrich (St. Louis, MO). Spectroscopy-grademethanol
was obtained from Merck (Darmstadt, Germany). Deionized
water was produced by Millipore device (France). Active
pharmaceutical ingredients (API) of the antibiotics cipro-
floxacin, ofloxacin, levofloxacin, and moxifloxacin were
commercially purchased from both Droupakhsh and Hakim
Pharmaceutical Companies (Iran). )e drug samples in-
cluding intravenous infusion of 0.2% ciprofloxacin (Samen
Mashhad Pharmaceuticals Company, Iran), ocular drop of
0.3% ciprofloxacin (Ciplex from Sina Darou Company, Iran),
200mg ciprofloxacin tablet (Tehran Pharmaceuticals Com-
pany, Iran), ocular drop of 0.5% of levofloxacin (Oftaquix
from Santen Pharmaceuticals Company in Finland), 500mg
tablet of levofloxacin (Tavanex) (Abidi Pharmaceutical
Company, Iran) and 200mg tablet of ofloxacin (Rouz-Darou
Pharmaceutical Company, Iran) were also commercially
purchased.

2.2. Apparatus. )e florescence spectra were obtained by
Array spectrophotometer model USB4000-FL with the light
source of deuterium lamp model DH-2000 series and xenon
model PX-2 (Ocean Optics Company, USA). )e flow cell

model FIA-SMA-FL-ULTseries and the optical fibers model
P600-2-SR were also from Ocean Optics (USA). )e utilized
optical fibers cover a wavelength region of 300− 1100 nm and
have a core diameter of 600 μm. )e flow adjusted by
Peristaltic pump model BT100− 1F (Longer Precision Pump,
China).

2.3. General Procedure. )e stock solution of 1000 μg·mL− 1

of four standard samples of antibiotics, including cipro-
floxacin, ofloxacin, levofloxacin and moxifloxacin were
separately prepared in 2 :1 ratio of methanol/deionized
water. )en, the dilution solutions of each were daily made
and at continuous flow mode fed to the flow cell and de-
tected by a fiber-optic fluorescence arrays system.

2.4. Fluorescence Array System in Continuous Flow Mode.
In continuous flow monitoring, the flow of sample is con-
tinuously fed into a fluorescence flow cell by a peristaltic
pump. Two fiberoptic probes were utilized to direct the light
from light source to the flow cell and the fluorescence array
from flow cell through the detector. Data are recorded and
displayed on the computer software. )e utilized laboratory
set is presented in Figure 1.

2.5. Procedure for Pharmaceutical Samples. In order to
validate the optimized method, the recovery value of dif-
ferent forms of commercial pharmaceutical samples of
ciprofloxacin, ofloxacin, and levofloxacin were investigated.
)e pharmaceutical samples were included intravenous
infusion of 0.2% ciprofloxacin, ocular drops of 3.8%
ciprofloxacin, 200mg ciprofloxacin tablet, 0.5% ocular
droplet of levofloxacin, a 500mg tablet of levofloxacin, and
200mg ofloxacin tablet.

2.6. Preparation of Ciprofloxacin and Levofloxacin Solutions.
For the analysis of ciprofloxacin, a stock solution of
2 μg·mL− 1 was prepared from 0.2% intravenous infusion of
that. In order to evaluate accuracy of the method, other
quantities of standard ciprofloxacin were added to the
sample solution for recovery tests. All measurements re-
peated five times.)e same procedure of sample preparation
was repeated for measuring eye drops of ciprofloxacin 0.3%
and levofloxacin 0.5%.

2.7. Preparation of Ciprofloxacin and Ofloxacin Solutions.
For the analysis of ciprofloxacin samples, appropriate
amount of ciprofloxacin tablets were weighed and trans-
ferred to a 100mL container to form a stock solution of
1000 μg·mL− 1. )en, it was placed in an ultrasonic bath for
20 minutes. It was filtered with 0.22 micron membrane
filters. Finally, it was diluted within the concentration range
of the calibration curve and detected. )en, other quantities
of standard ciprofloxacin were added to the sample solution
for recovery tests. All measurements repeated five times.

)e same procedure of sample preparation was repeated
for measuring ofloxacin tablets.
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3. Results and Discussion

3.1. Process Optimization. Optimization process was per-
formed by optimizing flow velocity and integration time.

3.2. Effect of Flow Rate. )e flow rates of the sample were
optimized in the range of 5–1500 μL·min− 1 (Figure 2). )e

signal slightly decreased following the increase of the flow
rate, it was considered that for the flow rate upper than
400 μL·min− 1, the obtained fluorescence spectra were
unstable.

So, the flow rate of 400 μL·min− 1 was chosen for the best
conformity with the signal stability and throughput of the
sample.
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Figure 1: Experimental setup for continuous flow measurements using spectrofluorometric fiberoptic array.
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Figure 2: Effect of flow rate: (a) ciprofloxacin, (b) ofloxacin, (c) levofloxacin, and (d) moxifloxacin. Condition: concentration 5 μg·mL− 1;
integration time: 600mS.
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Figure 3: Optimization of integration time for levofloxacin. Condition: concentration 25 μg·mL− 1; integration time: 600mS.
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Figure 4: Fluorescence spectra of standard solutions: (a) ciprofloxacin, (b) ofloxacin, (c) levofloxacin, and (d) moxifloxacin. Condition: flow
rate; 400 μL·min− 1; integration time: 600mS.
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3.3. Optimization of Integration Time. )e integration time
of the spectrometer (analogous to the shutter speed) was also
optimized. )e higher the integration time, the longer the
detector monitors the incoming photons. For too low in-
tensity, the value increased and vice versa. For the
25mg·mL− 1 of levofloxacin standard solution, with the in-
tegration time of 600mS, the maximum intensity 45118.7
was achieved (Figure 3).

3.4. Characteristics of Emission Spectrum. )e emission
spectrums of various standard solutions of ciprofloxacin,
ofloxacin, levofloxacin, moxifloxacin were recorded at the
optimized conditions (Figure 4).

To demonstrate the capability of the method for con-
tinuous monitoring, 1 cc of standard solutions of cipro-
floxacin and moxifloxacin from low concentration to high
concentration were added to the flow cell, respectively, and
changes of fluorescence intensity vs. time was monitored. As
depicted in Figure 5, by increasing the concentration of
ciprofloxacin and moxifloxacin the fluorescence intensity
rises instantly.

3.5. Analytical Performances. Series concentrations of four
antibiotics including ciprofloxacin, ofloxacin, levofloxacin,
and moxifloxacin were used for drawing the calibration
curves. A calibration graph of florescence intensity versus
the sample concentration is presented in Figure 6.

)e linear relationship, detection limit, and relative
standard deviation of each are presented in Table 1.

In comparison with the other methods for fluo-
roquinolones determination, despite of simplicity of
method, no labelling agent or additive for signal enhance-
ment and monitoring of flowing sample, the proposed
method had ng·mL− 1 detection limit which is quite com-
parable with the most of other reported methods (Table 2).

3.6. Interference Study. To evaluate the selectivity of the
developed method for the analysis of pharmaceutical
preparations containing ciprofloxacin, the effects of some
potential interference compounds (used as additive to
pharmaceutical samples) such as fructose, glucose, sucrose,
lactose, sorbitol, sodium citrate, magnesium stearate, talc,
methyl cellulose, and starch on the efficiency of the
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Figure 5: Fluorescence intensity vs. time: (a) ciprofloxacin, condition: flow rate: 400 μL·min− 1, integration time: 600mS, λmax: 489 nm, and
concentration range: 0.5–25 μg·mL− 1; (b) moxifloxacin, condition: flow rate: 400 μL·min− 1, integration time: 600mS, λmax: 512 nm, and
concentration range: 0.5–40 μg·mL− 1.
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Figure 6: Calibration curve of standard fluoroquinolones. Condition: flow rate, 400 μL·min− 1; integration time: 600mS.
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presented method were studied. A standard sample so-
lution of ciprofloxacin (5 μg·mL− 1) was analysed in the
presence of the extra amount of coexisting substances. A
compound was considered as noninterfering if the

variation of its signal was less than ±5% in comparison
with the signal in the absence of that. Table 3 shows the
results obtained. )e results indicated that there were no
significant interferences produced by these excipients

Table 1: )e analytical performance of the method.

Parameter Moxifloxacin Levofloxacin Ofloxacin Ciprofloxacin
λmax (nm) 525 495 497 489
Linear range (μg·mL− 1) 2–20 0.25–12 0.25–10 1–8
Relative standard deviation∗ (n� 7%) 0.527 0.517 0.468 0.561
Detection limit (μg·mL− 1) 0.093 0.036 0.035 0.081
LOQ (μg·mL− 1) 0.308 0.1185 0.1155 0.269
Correlation coefficient 0.9979 0.9972 0.9999 0.9992
∗Concentration: 5 μg·mL− 1.

Table 2: Comparison of this method with other reported methods for determination of fluoroquinolones.

Method Linear range (μg·mL− 1) Detection limit (μg·mL− 1)
Spectrofluorometric [65] 0.02–2.2 0.006–0.016
HPLC-UV [89] 0.15 to 5 0.04–0.08
HPLC [57] 0.003–1.3 0.001
HPLC-fluorescence [90] 0.005–0.1 0.0005–0.005
Capillary electrophoresis [83] 5–20 1.1 and 2.4
Chemiluminescence [77] 1.98×10− 9 0.003–7
HPLC–PDA [91] 0.1–10 0.03
Spectrophotometric [72] 0.5–25 0.084
HPLC [92] 0.0005–1 0.00007
)is method 0.25–20 0.035–0.093

Table 3: Effect of some foreign interference compounds.

Tolerance limit [foreign substance]/[CIP] Foreign substance added
80 Fructose, glucose, sucrose, lactose, sorbitol, sodium citrate, methyl cellulose
50 Magnesium stearate
40 Talc, starch

Table 4: Determination of ciprofloxacin, ofloxacin, and levofloxacin in pharmaceutical formulations.

Analytes Tissue Original
(mg·mL− 1)

Found
(mg·mL− 1)

RSD
(n� 5%)

Content
(μg·mL− 1)

Added
(μg·mL− 1)

Found
(μg·mL− 1)

Recovery
(n� 5%)

CIP Infusion 2
1.99± 0.003 1.91 0.04± 1.99 1 0.05± 3.01 102± 3
1.92± 0.036 1.34 0.03± 1.92 3 0.19± 5.01 103± 2
1.96± 0.016 1.06 1.96± 0.02 5 0.09± 6.97 100± 2

CIP Eye
drop 3

2.91± 0.028 8.80 0.17± 1.94 1 0.23± 3.02 108± 4
2.93± 0.054 7.96 0.16± 1.95 3 0.14± 5.03 102± 3
2.98± 0.006 5.68 0.11± 1.98 5 0.08± 7.01 100± 3

CIP Tablet 2.5
2.47± 0.009 7.06 0.14± 1.98 1 0.23± 2.96 98± 4
2.47± 0.010 4.34 0.09± 1.97 3 0.17± 5.10 104± 5
2.41± 0.03 6.71 0.13± 1.93 5 0.21± 6.89 99± 4

OFLX Tablet 2
1.98± 0.006 7.24 0.14± 1.98 1 0.15± 2.97 98± 4
1.91± 0.043 7.63 0.15± 1.91 3 0.19± 5.06 104± 5
1.95± 0.022 6.24 0.12± 1.95 5 0.19± 6.98 99± 4

Levo Tablet 5
5.37± 0.075 5.81 0.13± 2.15 1 0.35± 3.17 102± 4
5.32± 0.064 5.35 0.11± 2.12 3 0.29± 5.21 103± 4
5.17± 0.034 7.39 0.15± 2.06 5 0.12± 7.17 102± 3

Levo Eye
drop 5

5.38± 0.077 5.01 0.11± 2.15 1 0.26± 3.13 98± 4
5.18± 0.036 5.83 0.12± 2.07 3 0.16± 5.11 101± 4
5.23± 0.046 7.54 0.16± 2.09 5 0.17± 7.08 100± 4
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substances on the proposed method for the determination
of ciprofloxacin.

3.7. Measurements in Pharmaceutical Formulation. In order
to evaluate the applicability of the optimized method for
determination of fluoroquinolones, the recovery percent of
ciprofloxacin, ofloxacin, and levofloxacin in pharmaceutical
samples were investigated. )e obtained results for com-
mercial pharmaceutical samples are summarized in Table 3.
)e results show the potential of the developed method for
the measurement of real samples (Table 4).

4. Conclusions

In this study, we have proposed a simple and sensitivemethod
for quantitative measurement of fluoroquinolones medicines.
)e combination of flow system and array spectrofluoro-
metric provides the ability to apply PAC for multiwavelength
online monitoring of fluoroquinolones. )e developed
method was successfully utilized for analysis of ciprofloxacin,
ofloxacin, levofloxacin, and moxifloxacin in low concentra-
tion range with detection limit of 35–93 ng·mL− 1.

In addition to the fast detection time and automation,
acceptable accuracy, and good reproducibility, the proposed
method was used to measure fluoroquinolones in six forms
of commercial pharmaceutical formulation as well and the
obtained results showed the capability of method to be
applied for online industrial analysis of real samples.
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[69] D. González-Gómez, F. Cañada-Cañada, A. D. Campiglia,
A. Espinosa-Mansilla, A. Muñoz de la Peña, and J. S. Jeong,
“Rapid ultrasensitive chemometrics-fluorescence methodol-
ogy to quantify fluoroquinolones antibiotics residues in
surface water,” Journal of Water Chemistry and Technology,
vol. 38, no. 5, pp. 280–286, 2016.

[70] S. T. Ulu, “Spectrofluorimetric determination of fluo-
roquinolones in pharmaceutical preparations,” Spectrochi-
mica Acta Part A: Molecular and Biomolecular Spectroscopy,
vol. 72, no. 1, pp. 138–143, 2009.

[71] S.-N. Yin, T. Yao, T.-H. Wu, Y. Zhang, and P. Wang, “Novel
metal nanoparticle-enhanced fluorescence for determination
of trace amounts of fluoroquinolone in aqueous solutions,”
Talanta, vol. 174, pp. 14–20, 2017.

[72] T. Yao, “Determination of trace fluoroquinolones in water
solutions and in medicinal preparations by conventional and
synchronous fluorescence spectrometry,” Open Chemistry,
vol. 16, no. 1, pp. 1122–1128, 2018.

[73] Z. Zhang, M. Zhang, X.-y. Wu et al., “Upconversion fluo-
rescence resonance energy transfer-a novel approach for
sensitive detection of fluoroquinolones in water samples,”
Microchemical Journal, vol. 124, pp. 181–187, 2016.

[74] H.-W. Sun, L.-Q. Li, and X.-Y. Chen, “Flow-injection en-
hanced chemiluminescence method for determination of
ciprofloxacin in pharmaceutical preparations and biological
fluids,”Analytical and Bioanalytical Chemistry, vol. 384, no. 6,
pp. 1314–1319, 2006.

[75] Z. Zhang, X. Li, X. Wang, S. Chen, B. Song, and H. Zhao,
“Determination of ciprofloxacin by flow injection analysis
based on chemiluminescence system,” Journal of Rare Earths,
vol. 24, no. 3, pp. 285–288, 2006.

[76] Y.-D. Liang, J.-F. Song, and X.-F. Yang, “Flow-injection
chemiluminescence determination of fluoroquinolones by
enhancement of weak chemiluminescence from peroxyni-
trous acid,” Analytica Chimica Acta, vol. 510, no. 1, pp. 21–28,
2004.

[77] F. Aly, S. A. Al-Tamimi, and A. A. Alwarthan, “Chem-
iluminescence determination of some fluoroquinolone de-
rivatives in pharmaceutical formulations and biological fluids

International Journal of Analytical Chemistry 9
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