— Open Journal of
N Discrete Applied Mathematics

Article
On graceful difference labelings of disjoint unions of
circuits

1 N
PSR Press

Alain Hertz"* and Christophe Picouleau?

1
2

Department of Mathematics and Industrial Engineering, Polytechnique Montréal and GERAD, Montréal, Canada.
CEDRIC, Conservatoire National des arts et métiers, Paris France.; christophe.picouleau@cnam.fr
*  Correspondence: alain.hertz@gerad.ca

Received: 19 September 2019; Accepted: 7 November 2019; Published date: 30 November 2019

Abstract: A graceful difference labeling (gdl for short) of a directed graph G with vertex set V is a bijection
f:V —={1,...,|V|} such that, when each arc uv is assigned the difference label f(v) — f(u), the resulting arc
labels are distinct. We conjecture that all disjoint unions of circuits have a gdl, except in two particular cases.
We prove partial results which support this conjecture.

Keywords: Graceful labelings, directed graphs, disjoint unions of circuits.

MSC: 05C78, 05C20.

1 Introduction

Q_ graph labeling is the assignment of labels, traditionally represented by integers, to the vertices or
edges, or both, of a graph, subject to certain conditions. As mentioned in the survey by Gallian [1],

more than one thousand papers are devoted to this subject. Among all variations, the most popular and
studied graph labelings are the B-valuations introduced by Rosa in 1966 [2], and later called graceful labelings
by Golomb [3]. Formally, given a graph G with vertex set V and 4 edges, a graceful labeling of G is an injection
f:V —{0,1,...,q} such that, when each edge uv is assigned the label |f(v) — f(u)|, the resulting edge labels
are distinct. In other words, the vertices are labeled using integers in {0,1,...,q}, and these vertex labels
induce an edge labeling from 1 to q. The famous Ringel-Kotzig conjecture, also known as the graceful labeling
conjecture, hypothesizes that all trees are graceful. It is the focus of many papers and is still open, even for
some very restricted graph classes such that trees with 5 leaves, and trees with diameter 6. The survey by
Gallian [1] lists several papers dealing with graceful labelings of particular classes of graphs, such that the
disjoint union of cliques, the disjoint union of cycles, and the union of cycles with one common vertex.

For a directed graph with vertex set V and q edges, a graceful labeling of G is an injection f : V —
{0,1,...,q} such that, when each arc (i.e., directed edge) uv is assigned the label (f(v) — f(u)) (mod g+ 1), the
resulting arc labels are distinct. As mentioned in [1] and [4], most results and conjectures on graceful labelings
of directed graphs concern directed cycles, the disjoint union of directed cycles, and the union of directed
cycles with one common vertex or one common arc. In particular, it is proved that na, the disjoint union of
n copies of the directed cycle with three vertices, has a graceful labeling only if n is even. However, it is not
known whether this necessary condition is also sufficient.

In this paper, we study graceful difference labelings of directed graphs, which are defined as follows. A
graceful difference labeling (gdl for short) of a directed graph G = (V, A) is a bijection f : V — {1,...,|V|}
such that, when each arc uv is assigned the difference label f(v) — f(u), the resulting arc labels are distinct. The
absolute value |f(v) — f(u)] is called the magnitude of arc uv, while f(v) is the vertex label of v. Note that in a gdl
of G, two arcs uv and u'v’ may have the same magnitude |f(v) — f(u)| = |f(v) — f(u')| but their difference
labels must then be opposite, i.e., f(v) — f(u) = —(f(v) — f(u')).

Given two graphs G; = (V}, 4;) and G; = (V}, A;) with V; N V; = @, their disjoint union, denoted G; + G;,
is the graph with vertex set V; U V; and arc set A; U A;. By pG we denote the disjoint union of p copies of G. For
k > 2 we denote by (?}k a circuit on k vertices isomorphic to the directed graph with vertex set V = {vy,..., v}
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and arc set A = {v;v;,1 : 1 < i < k}U{vxv1}. The circuit E; is also called a directed triangle, or simply a
triangle. For all graph theoretical terms not defined here the reader is referred to [5].
Not every directed graph has a gdl. Indeed, a necessary condition for G = (V, A) to have a gdlis |A| <
2(|V| —1). Nevertheless this condition is not sufficient since, for example, C3 has no gdl. Indeed, all b1]ect10ns
f:V — {1,2,3} induce two difference labels equal to 1, or two equal to -1. As a second example, E; + C3 has
no gdl. Indeed:

— —
o If the two arcs of C; have a magnitude equal to 1, 2, or 3, then Cj also has an arc with the same magnitude,

which means that two arcs in C, 4 C3 have the same difference label;
o If the magnitude of two arcs of C; is equal to 4, then two difference labels in C3 are equal to 1 or to -1.

We conjecture that all disjoint unions of circuits have a gdl, except for the two cases mentloned above. We

were not able to prove this conjecture, but give partial results on it. In particular, we show that nC3 has a gdl
if and only if n > 2.

2 Partial proof of the conjecture

We are interested in determining which disjoint unions of circuits have a gdl. As already mentioned in
the previous section, 6; and a + C3 have no gdl. We conjecture that these two graphs are the only two
exceptions. As first result, we show that if G is a circuit of length k = 2 or k > 4, then G has a gdl. We next
prove that if G has a gdl, and if G’ is obtained by adding to G a circuit of even length k = 2 or k > 6, or two
disjoint circuits of length 4, then G’ also has a gdl. We also show that the disjoint union of C4 with a circuit of
odd length has a gdl. All together, these results prove that if _(E is the dls]omt union of circuits, among which
at most one has an odd length, then G has a gdl, unless G = Cz or G = Cz + C3

We next show that the disjoint union of # > 2 circuits of length 3 has a gdl, and this is also the case if a C4
is added to nC3 Hence, if G is the union of disjoint circuits with no odd circuit of length k > 5, then G has a
gdl, unless G = C—>3 orG = Cz + C3 In order to prove the above stated conjecture, it will thus remain to show
that if G is the disjoint union of circuits with at least two odd circuits, among which at least one has length
k > 5, then G has a gdl.

Our first lemma shows that all circuits have a gdl, except C3

Lemma 1. The circuit (T>k with k = 2 or k > 4 has a gdl. Moreover, if k > 5, then (?)k has a gdl with exactly one arc of
magnitude 1.

—
Proof. Clearly, C; has a gdl since the two bijections f : V — {1,2} have 1 and —1 as difference labels. So
assume k > 4. We distinguish four cases, according to the value of k mod 4:

o If k =4p,p > 1, we consider the following vertex labels:

= f(vai41) =i+1,0<i<2p—2
- f(uy) =4p+1—i,1<i<2p-2
- floap—2) =2p+1, f(vap-1) =2p +2, f(vgp) = 2p.

Clearly, f is a bijection between {vy,...,v¢} and {1,..., k} with the following difference labels:

= f(vi1) — f(o) = ()T (4p —i),1 < i< 4p—4
= floap—2)—f(vap—3) =2, f(vap-1)—f(vap—2) =1, f(vap) = f(vap-1) =2, f(v1)—f(vap) =—2p + 1.

All magnitudes are distinct, except in three cases:

- f(1)4p 2) f(7)4p 3) =2and ZJ4 U4p_1) = -2
~forp =3, f(vzpi2) — f(v2p41 o L Ho) — floay) = —(2p —1);
- forp =1, f(vgp1) — f(vgp2) = 1 and f(v1) — flvgp) = —1.

Hence, f is a gdl, and there is exactly one arc of magnitude 1 when p > 2.
e Ifk =4p+1,p > 1, we consider the following vertex labels:
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= f(v2i41) =i+ 1,0 <i < 2p;
— o) =4p+2—i,1<i<2p.

Again, f is a bijection between {v1, ..., v} and {1,..., k} with the following difference labels:

:f(vi+1) (/;( v;)

= (- )1+1(4p+1—1)1<z<4p,
(01) = f(vap11) =

All magnitudes are distinct, except for one pair of arcs : f(v2p12) — f(v2p41) = 2pand f(v1) — f(v4p11) =
—2p. Hence, f is a gdl with exactly one arc of magnitude 1.
o If k =4p+2,p > 0, we consider the following vertex labels:

= f(v9i11) =i4+1,0<i<2p;
- Fflog) =4p+3—i1<i<2p+1.

Here also, f is a bijection between {v1, ..., v} and {1,...,k} with the following difference labels:

- f(vlﬂ / )= (-1 dp+2-i),1<i<dp+1;
01) = f(Vap42) = —2P— L.
There are only two equal magnitudes : f(v2p42) — f(v2p+1) =2p+1and f(v1) — f(vgpi2) = —(2p +1).
Hence, f is a gdl with exactly one arc of magnitude 1 when p > 1.
o If k =4p+3,p > 1, we consider the following vertex labels:

~ flogp) =i+1,0<i<2p—1;
- f(UZi) = 4P+4— l,l S i S 2p,
= f(oap41) =2p+2, f(vapi2) =2p +1, f(vsp43) = 2p +3.

For this last case, f is a bijection between {vy,...,vx} and {1,...,k} with the following difference labels:
= f(vit1) — f(o ( )1+1(4P+3—1)1<1<4P—1

) —
- f(U4p+1)—f(U4p) 2, f(vapt2)—f(vapr1) = =1, f(vap13)—f(vap12) =2, f(v1)—f(vapy3) =—(2p +
2).

All magnitudes are distinct, except in two cases:

— f(vap- z; fgmp 3; =2and f(v4 U4p 1) =-2

= f(vops2) — flvgps1) = 2p+2 amc{qf (v1) — f(v4p+3) = —(2p +2).
Hence, f is a gdl with exactly one arc of magnitude 1.

O

We now show how to add two circuits of length 4, or one even circuit of length k > 6 to a graph that has
agdl

Lemma 2. Ifa graph G has a gdl, then G + Za also has a gdl.

Proof. Let {vy,v;,v3,v4} be the vertex set of the first a, and let {v10vy, V203, V3v4, V4V } be its arc set. Also, let
{vs,v6, vy, v3} be the vertex set of the second Cq, and let {v5v4, v4v7, V708, V3U5 } be its arc set.

Suppose G = (V,A) has a gdl f. Define f'(v) = f(v)+4forallv € Vaswellas f'(v1) = 1, f'(vp) =
[VI+38 f'(v3) =2, (va) = [V]+6,f(05) =3, (vs) = |V|+5,f'(v7) =4 and f'(vg) = |V|+7. Clearly,
f' is a bijection between V U {vl, ...,ug} and {1,...,|V| + 8}. Moreover, the difference labels on the arcs of
the two circuits are f'(vp) — f/'(v1) = |V|+ 7, f'(v3) — f(v2) = =(|V]|+6), f'(vs) — f'(v3) = |V|+4, f(v1) —
f'(va) = =(IV[+5), f'(v6) = f'(05) = [VI+2,f'(v7) = f'(vs) = —=(|V|+1),f'(v8) = f'(v7) = [V] +3, and
f'(vs) — f'(vs) = —(|V| +4). Since all magnitudes in G are at most equal to |V| — 1, f"isa gdl for G+2C4. O

%
Note that in the proof of Lemma 2, G can be the empty graph G with no vertex and no arc. Hence 2C4 has
agdl

Lemma 3. Ifa graph G has a gdl, then G + C‘)zk also has a gdl for k > 1,k # 2.
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Proof. Suppose G = (V,A) has a gdl f, and let {vy, ..., v} be the vertex set and {v1vy, ..., Vog 102k, Vok¥1 }
be the arc set of Cy.. We consider two case.

e If k is odd, then define f'(v) = f(v) + k forallv € V, as well as f'(vy;_1) = k—i+1and f'(vy) =
|[V|+k+ifor1l < i < k. Clearly, ' is a bijection between V U {vy,..., vy} and {1,...,|V| + 2k}.
Moreover, the magnitudes on Cyy are all striclty larger than |V| and all different, except in one case :
f'(vki1) — f(vx) = |V|+kand f'(v1) — f'(vyx) = —(|V| + k). Since all magnitudes in G are strictly

. -
smaller than |V|, f" is a gdl for G + Cyy.

. If_k)is even and at least equal to 4, then set f'(v) = f(v) + k for all v € V, and define the vertex labels on
Cyy as follows:

- fl(vgiq1) =k—i+1for1 <i<Kk
- f(vy)) = |V|+k+iforl1 <i<k-3;
- f/(02k74) = |V| +2k,f/(‘02k,2) = |V| +2k*2,f’(vzk) = |V| + 2k — 1.

<
<

—
f' is bijection between V U {vy,...,vy} and {1,...,|V| + 2k}, and all magnitudes on Cyy are strictly
larger than |V|. Moreover, all magnitudes on Cyy are different, except in two cases :

= f/(ox) = fl(vp_1) = |V +k—T1and f'(01) = f'(v3) = = (|V| + k- 1);
= f(02k-4) = f'(vak—5) = |V| + 2k = 3and f'(vp—1) — f'(vax—2) = = (|V| + 2k - 3).

Since all magnitudes in G are strictly smaller than |V|, f’ is a gdl for G + C—zlz
O

Since graph G in the statement of Lemma 2 is possibly empty, it follows from Lemmas 1, 2 and 3 that all
disjoint unions of circuits of even length have a gdl.

We now consider disjoint unions of circuits among which exactly one has as an odd length. As already
observed, E; and C_z> + E; have no gdl. We show that these are the only two exceptions. According to Lemmas
2 and 3, it is sufficient to prove that 26; + a, a =+ (ﬂ (k>1),and C—21>( + E; (k > 3) have a gdl

=
Lemma 4. 2C; + Cj3 has a gdl.

Proof. Let {vy,...,v7} be the vertex set and {v10vy, 201, V304, V4V3, UsVe, VsU7, V705 } be the arc set of 2C_2> + E;
By considering the vertex labels f(v1) = 1, f(v2) = 6, f(v3) = 3, f(va) = 7, f(vs) = 2, f(vs) = 4 and
f(vy) =5, itis easy to observe that f is a gdl. O

Lemma 5. a + Coxt1 has a gdl for every k > 1.

% —>
Proof. Let G = C4 + Cyy 1. We distinguish two cases:

_)
e If kis odd, then G contains n = 4(7%1) + 3 vertices. Consider the vertex labels of C, used in the last case
%
of the proof of Lemma 1, with p = k%l, and assume that {v1,v,_2,v,_1,0,} is the vertex set of the Cy4 in

e
G, while {v,v3,...,v,_3} is the vertex set of the Cy 1. It is sufficient to prove that the difference labels
on v1v,_y and v,_3vp do not appear on any other arc of G.

- f(vp—2) — f(v1) = 2p+2) —1 = (k+3) — 1 = k + 2, which is an odd positive number, while all
other odd difference labels are negative.
- f(v2) — f(vy—3) = (4p+3) — (2p+4) = 2p —1 = k, which is again an odd positive number,
different for the other negative odd labels.
e If kis even, consider the vertex labels of (ﬂ used in the first case of the proof of Lemma 1 with p = % +
1>2(@e,4p =2k +é2. Also, define f(vyr,5) = 2k +5 = 4p + 1. Assume that {vy, 7J2k—+21>'02k+31 Upkya ) iS
the vertex set of the C4 in G, while {v,v3,..., 011, U2k 5} is the vertex set of the Cyy (1. It is sufficient

to prove that the difference labels on v1 vy, Uok4572, and vy 102¢45 do not appear on any other arc of
G.
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- f(voky2) — f(v1) = 2p+1) —1 = (k+3) — 1 = k + 2, which is an even positive number, while all

other even difference labels are negative.
- f(v2) — f(vakss) = (4p) — (4p+1) = —1. Since p > 1, the only other arc with magnitude 1 is

Uok42V2k+3 Which has a difference label of 1.
- f(vokys) — f(vgks1) = (Ap+1) — (2p —1) = 2p+2 = k + 4, which is again an even positive
number, while all other even difference labels are negative.

O
Lemma 6. C—>k + C_3> has a gdl for every k > 5.

Proof. Let {01,_->- . ,vﬁ}3} be the vertex set and {v1v, ..., Ux_10k, UxV1, vk+1vk+&>vk+zvk+3, Uk43Uks1} be the
arc set of G = Cy + Cs. Consider the gdl f defined in the proof of Lemma 1 for Cy, and set f'(v;) = f(v;) + 2
foralli =1,..., k. If the only arc of magnitude 1 has a difference label equal to -1, then define f "(vk1) = 1,
f'(vksn) = 2,and f'(vgy3) = k+ 3, else define f'(vgy1) = 2, f'(vks2) =1, and f/(vg,3) = k + 3. Clearly, f' is
a bijection between {v1,...,v;,3} and {1,...,k + 3}. To conclude that f’ is a gdl, it is sufficient to prove that
the difference labels on C3 do not appear on C_>k

o Thgrc Uk+1Vk+2 is of magnitude 1, and its difference label has the sign opposite to that of magnitude 1
in Ck ; BN
e The magnitudes of vy o013 and vy 30k, are distinct and larger than k, while all magnitudes in Cy are
strictly smaller than k.
O

All together, the previous lemmas show that if G be the disjoint urgon (i circuits, among which at most
H
one has an odd length, then G has a gdl if and only if G # C3 and G # C; + Cg.
We now consider the disjoint union of n circuits of length 3, and show that these graphs have a gdl for all
n>2.

_>
Lemma 7. For every n > 2, the graph nCs has a gdl with at most one arc of magnitude 3n — 2, and all other arcs of
magnitude strictly smaller than 3n — 2.

Proof. The graphs in Figures 1, 2, 3, 4, 5, 6, 7 and 8 show the existence of the desired gdl for2 < n <9.

FANEAY

%
Figure 1. 2C3.

N B %

H
Figure 2. 3C3.
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Figure 3. 4C3.
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Figure 4. 5C;.
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Figure 5. 6C;3.
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We now prove the result by induction on n. So, consider the graph na with n > 10, and assume the
result is true for less than n directed triangles. Let f and r be two integgs such that —4 < r_; 2andn =7t +r.

We thus have t > 2. We will show how to construct a gdl for nC3 given a gdl for tC3. We thus have to
add n — t directed triangles to tC_3>. For this purpose, define

n—t r
6 — [ . w _3t+H.
It follows that n —t = 26 if r is even, and n —t = 20 — 1 if r is odd. We now prove the lemma by
considering the 4 cases A,B,C,D defined in Table 1.

Table 1. Four different cases

n—t | r 0 Case
4 3t-2
2 3t—-1 A

20 0 3t

2 3t+1 B
3 3t—1

%9 A1 3t
1 3t+1 D

Case A:n=20+t0¢€ {3t—2,3t— 1,3t}
Consider 26 directed triangles T, ..., Ty, every T; having {vs;_»,v3;_1,v3;} as vertex set and {v3;_»v3; 1,
U3i_103i, U3;V3;_2 } as arc set. Consider the vertex labels f(v;) for Ty, ..., Tog shown in Table 2. Also, let f’ be

Table 2. The labeling of T1, . .., Ty for case A.

Triangle T; | f(v3i—2) f(vsi—1) f(v3i)
T 1 2011 60 13t —3
T 2 60 + 3t 46 + 3t
T3 3 60 +3t—1 20 +2
T, 4 46+ 3t —1 60+ 3t —2
Ty 1 %K1 20+ k 60 + 3t — 2k 42
Ty % | 604+3t—2k+1| 4043t —k+1
k=3,...,0

a gdl for 1?C—3> with at most one arc of magnitude 3¢ — 2, and all other arcs of magnitude strictly smaller than
3t — 2. Define f(v;) = f'(v;) + 360 fori =60 + 1,...,60 + 3t. One can easily check that f is a bijection between
the vertex set {vy,...,v¢p43:} and {1,...,60 + 3t = 3n}.

For each T;, we define its small difference label (small-dl for short) as the minimum among |f(v3;_1) —
f(vsio)|, |f(vsi) — f(vsi_1)|, and |f(v3i_2) — f(vs;)|. Similarly, the big difference label (big-dl) of T; is the
maximum of these three values, and the medium one (medium-dl) is the third value on T;. Table 3 gives the
small, medium and big difference labels of T7, . .., Tpg. By considering two dummy directed triangles D; and
D,, we have grouped the triangles into 6 + 1 pairs 7, . . ., 715, as shown in Table 3. Two triangles belong to the
same pair 77; if their small difference labels have the same magnitude. The difference labels given for D; and
D, are artificial, but are helpful for simplifying the proof.

Let s! be the small-dl of the first triangle of 77;, and let s? be the small-dl of the its second triangle. Define
ml.l, miz, bi1 and bi2 in a similar way for the medium and big difference labels of 7;. For example, s% =—(20-2),
$3=20-2,m) = —(40+3t—5), m5 =40 +3t—7,b} = 60 +3t—7,and b3 = —(660 + 3t —9). Note that
sf + mi = —b{: and |sf | + |mf | = |b{ |foralli =0,...,0 and j = 1,2. The following properties are valid for every
miwith2 <i<6:
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Table 3. The difference labels of the arcs of Ty, . .., Tog, D1, D; for case A.

Pair Triangle | Small-dl Medium-dl Big-dl
T 20 10 +3t—4 —(66 + 3t — 4)
o= ) ) no| -0 | —@o+a-2) | evra-2 |
Ty | =(20-1)] =(46+3t—3) 60 + 3t —4
m = (T3, Ts) T, 201 4043t -5 — (60 + 3t — 6)
N Dy | —(20-2)| —(46+3t-5) | < 60+3t—7 |
A I T | 20-2 | 40+30-7 | —(68+3t-9) |
T = (Tzk,Tzk+l) T2k —(29—]{) —(49+3f—3k+1) 60 +3t —4k+1
k=3,...,0—1 Tor i1 20—k 49+3t—3k—1 | —(60+3t—4k—1)
NN Ty | - -0 | —(@+3t+1) | 204+3t+1 |
7o = (Too, D2) D, 0 0+3t—1 — (2043t —1)

° s}, mll and bl-2 are negative integers, while 512, ml2 and bl-l are positive integers;
° slz = —s}, ml2 = —m} —2,and bi2 = —bl-l +2;

e ifi <0, ’chens}Jrl = 511 +1, m}H = mll + 3, and bl.lJrl = bi1 —4.

Note that all big difference labels b{ have the same parity for2 <i < §,j = 1,2, while for the medium ones,
the parities alternate between successive 7t; and 7; 1. Moreover, the largest magnitude is 660 + 3t —2 = 3n — 2,
and there is exactly one arc with this magnitude. Since 6 < 3t 4+ 1, we have § + 3t + 1 > 26, which means that
no medium-dl can be equal to a small-dl, with the exception of m3 which can be equal to 26 or 26 — 1. But we
don’t care about this exception since D, (the second triangle of 7y) is a dummy triangle. Notice also that the
small difference labels in Table 3 are all distinct, which is also the case for the medium and the big ones. Since
all difference labels on Ty, ..., Trg4+ are distinct, we conclude that there are only two possibilities for two
arcs uv and u'v’ of nCj to have the same difference label f(v) — f(u) = f(v') — f(u'):

e One of these arcs belongs to Tg1, ..., Tog+ and the other to T, ..., Tpg;
e Both arcs belong to Ty, . . ., Tg, one having a big-dl, and the other a medium-dL

Consider the first case. Remember that there is at most one arc on Trgp1, . . ., Tog4+ with magnitude 3f — 2,
all other arcs having a smaller magnitude. Since at most one arc on T7,..., Ty has a magnitude equal to
6 > 3t — 2, we conclude that such a situation can only occur at most once (with 6 = 3t — 2), and we can avoid
it by flipping all triangles Trg11, ..., Tog++-

More precisely, by flipping a directed triangle 53) with vertex set {x,y,z} and arc set {xy, yz, zx}, we mean
exchanging the vertex labels of y and z. Hence, the set of difference labels is modified from { f (y) — f(x), f(z) —
f(y), f(x) = f(z)} to {f(z) — f(x), f(y) — f(z), f(x) — f(y2)}, which means that each difference label of the
original set appears with an opposite sign in the modified set, but with the same magnitude.

Consider the second case, and let i and j be such that by = m]V for x,y in {1,2}.

Note that 0 < j < i < 0. We say that 71; is conflicting with 7t; and we write 71; — 71;. If 77; is not conflicting
with 77;, we write 7; - ;. Note that

if there are k < j < i such that 7t; — 7; — 71, then 7 - 71y forall £ < k. 1)

Indeed, if 7; — T — T, then there are x,y,z, w in {1,2} such that bi = mj/ and b]'? = my. Then:
6] = ] + 191 = [67] 4+ 1571 2 (6] 4+ [s] = 2 = [m?] + [s] + ] — 2 = [B] + |s!] + |sf'] - 2.

Since [b}| > 26 + 3t + 1, [s{| > |s]y| > [s¥| > 6, we have min{|b}[, |b?|} > [b¥| —2 > 46 + 3t. Hence,
i = 1y for all £ < k since there is no arc with medium magnitude at least equal to 460 + 3t.

We now show how to avoid conflicting pairs 77; and 7t; with both i and j at least equal to 2. Conflicts
involving g and 711 (ie., Ty, ..., Ts) will be handled later. Consider i and j such that2 < j < i < 6 and
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7t; — 7tj. Since b} and m]2 are positive, while b? and m]1 are negative, we either have b} = m]2 orb? = m]1 In the
first case, we say that 7; is 12—conflicting with 77;, while in the second case, we say that 7; is 21—conflicting
with 77;. Note that

if 77; is 12 — conflicting with 7, then 7t;_; is 21 — conflicting with 7; and 7;11 - 71;. 2)
if 77; is 21 — conflicting with 7, then 77,1 is 12 — conflicting with 77; and 77; 1 » 71;. 3)
Indeed, if 7; is 12—conflicting with 7;, then bi1 = mjz-, which implies bl-z_1 = —bl-1 —2= —m]Z—Z = m]l Since

max{|b}, |, |b24]} = [b} 4| = b} —4 < m2 < min{|m1| |m2|} we have 71 -+ 7.

2
i = b 2——m —2=m ]
Moreover, since min{|b} ,|, [b? ,|} = |b? || = [b?| +4 > mj = max{\mjl.|, |m]2|}, we have ;1 = 7T]. Observe
also that:

Similarly, if 71; is 21—conflicting w1th 7j, then b2 = m}, ] which implies b}

ifr[i—>njfor2§j,then7'ck—/+njfor2§k7éi,i—1,i+1. 4)

Indeed, if 2 < k < i — 1, then min{|b}|, |b?|} > max{|m}|, |m]2|} + 4, while for 6 > k > i+ 1, we have
max{|b,1|, |b%|} < min{|m}|, |m12|} —4.
In both cases, none of m]1 and rrz]2 can be equal to b} or b?. As next property, note that:

if 1; — 7j for 2 < j, then 71; » 7 for 1 < k # j. (5)

Indeed, let us first show that 7; - 7; 1 If j = 2, then m1 = m2 2= —m2 4 and m1 —m% = m%—b—Z.
Since we have either b1 = m2 and b2 —m2 +2, or b2 = m2 and b1 = —m2 + 2, we see that 71; - 1. For
j > 2, observe that b}, b2 ], m all have the same parity, while m] 1,m5_; have the opposite parity. Hence
Vel ]

S1m11arly, 7 + 7y forall 2 < j < 6 —1 since the parity of m!
b}, b2,

Now, let x,y € {1,2} be such b} = m;j If1 <k < j—1,then min{|m}|, [m?|} > max{|b}|, |b?} + 2, while
for 0 >k > j+ 1, max{|m|, |m2|} < min{|b}|, |b?|} — 2.

In both cases, none of mll< and m% can be equal to b} or blz, which proves that ; - m for k > 1,k #
i—1jj+1

In what follows, we will remove conflicts by flipping some triangles. More precisely, by flipping 7;, we
mean flipping both triangles in 7r;. Note that:

i1 ]2 11 1s the opposite of the parity of

if 1; — 7tj for j > 2, then 71; » 71y for all k > 2 after the flip of 7;. (6)

Indeed, if 71; is 12—conflicting with 7;, then bl.l = mJZ, and there is no triangle with medium-dl equal to

—b} = —mjz- =or —blz = bil —2= m]2 — 2. Similarly, if 7t; is 21 —conflicting with usy then bi2 = mjl-, and there is
no triangle with medium-dl equal to —b} = —b? 4+ 2 = —mjl» +2or —b? = —mjl-. Hence, we have mt; » my, for

all k > 2 after the flip of 7;. Also,

if 1; — 7tj for j > 2, then 7ty = 71; for all k < 6 after the flip of 7;. 7)

2 12 1
, by = m;,

Indeed, if 71; is 12—conflicting with 77, then b} = m; s

and there is no triangle with a big -dl

equal to m] = —b? | or —m]2 = —b}. Similarly, if 7; is 21 conﬂ1ct1ng with 77, then b? = m1 b} = m] and
there is no triangle with a big-dl equal to m]1 —b? or — —b} - Hence, we have 7 - 71; forallk < 6

after the flip of 7;.

Now, let | be the set of integers j such that 7; — 7; — 7 for at least one pair i,k of integers with
2 <k <j<i<#. Also, let ] be the set of integers j' such that there is k > 2 and j # j" in ] with 7r; —
and 7y — 71 Note that J N J' = @. Indeed, consider j' € J', and j # j" in ] such that 7r; — 7 and 77y — 7.,
It follows from (2), (3) and (4) that // =j—1 or j/ = j+1. Since j € ], m]1 and m]2 have the same parity as the
big difference labels on T5, . . ., Tpp, which means that m}, and mjz, have the opposite parity. Hence, there is no i
with 7t; — 77, which proves that /' ¢ J.
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By flipping all 7r; with £ € JU J', we get 7t; = 7 forall2 < j < i < 6 withiorjin JUJ'". Indeed, it
follows from (1) that we cannot have 7r; — 7r; with both i and j in J U J', since this would imply the existence
of k, k' with2 < k < k' < 0 and 7ty — 71; — 7j — 7. Hence, it follows from (6) and (7) that 7r; - 7; for i or j
inJ,2 <j < i< 6. Moreover, as observed above, j € J' implies that mjl./ and m]2, do not have the same parity
as the big difference values on T5, . .., Tog. Hence, it follows from (6) that 77; -+ 7tj foriorjin | 2<j<i<e.

So, after the flipping of all 77, with £ € JU ', the remaining conflicts 71; — 7r; with 2 < j < i < 6 are such
that {i,j} N (JUJ') = @ . Consider any such conflict. If there is i’ # i such that 7t; — 7, then we know from
(4) that i’ = i — 1 or i + 1. Without loss of generality, we may assume i’ = i 4 1 (else we permute the roles of
i and i'). Since none of j,i,i’ belongs to J U J', there is no k such that 7y — 7, 7 — 717 or 7; — 7. Also, it
follows from (4) that there is no k # 7,1’ such that 71, — T

o if i <20/3, we flip 77;. We then have min{|b}|, [b?|} > 60 + 3t —4(26/3) — 1 = 106/3 + 3t — 1. It follows
that j < 26/9 else max{|m]1.\, |m]2|} < 40 +3t—3(20)/9 —2 = 100/3 + 3t — 2. Hence min{|b]1|, |b]2|} >
60 + 3t —4(20/9) —1 = 466/9 + 3t — 1 > 46 + 3t — 2. Since the medium magnitudes are at most equal
to 46 + 3t — 2, we cannot have 71; — 77 after the flip of 77;. Also, it follows from (7) that, after the flip of
7j, we have 71 - 7; for j < k < 6. Hence, after the flip of 71, the difference labels on its two triangles
are different from those on the other triangles Ty, k > 5.

o If i > 20/3, we flip 71; and 71y (if any). In this case, we have max{|m}|, [m3|} < max{|m}|,|m?} <
46 + 3t — 3(20/3) = 260 + 3t. Since all big magnitudes on Ty, ..., Ty are strictly larger than 26 + 3t, we
cannot have 7, — 7; after the flip of 7r; and 7ty. Also, it follows from (6) that after the flip of 7r; and 7y,
we have 7r; = 1 and 71y - 71y for 2 < k < i. Hence, after the flip of 77; and 77, the difference labels on
their triangles are different from those on the other triangles Ty, k > 5.

After all these flips, there is no 71; — 7; with 2 < j < i < 6. We consider now triangles Ty, T, T3, Ty
involved in 7p and 71y. If there is j > 2 such that 77; — 7y then we know from (5) that 71; - 71 for all
2 < k < j. Hence, j ¢ JUJ'. If, before the flips, there was i such that 7r; — usy then i > 20/3. Indeed, we
have seen above that if i < 26/3, then min{|b]1 |, |bJ2 |} > 46 + 3t — 2, which means that 7t; -+ 1. So, 77; was not
flipped, and by flipping 711, we get 71; -+ 711 forall2 < j < 6.

Since the parity of m{ and m) is the opposite of the parity of b} and b? for all i > 2, we have ;- 1o for
all 2 < j < 0. Hence, the only possible remaining conflict is between 71y and 771. This can only occur if b9 = b}
and 71y was flipped. In such a case, we flip 77y to remove this last conflict.

CaseB:n=20+4+1t60=3t+1

We treat this case as the previous one. More precisely, the vertex labels f(v;) on Ty, ..., Tog are given in
Table 4. Given a gdl f’ for tE—; with at most one arc of magnitude 3t — 2, and all other arcs of magnitude strictly
smaller than 3t — 2, we set f(v;) = f'(v;) + 360 fori = 60 +1,...,60 + 3t. Again, one can easily check that f is
a bijection between {v1, ..., g3} and {1,...,60 + 3t = 3n}.

Table 4. The labeling of Ty, . .., Ty for case B.

Triangle T; f(v3i—2) f(v3i—1) f(v3i)

T 1 2011 60 1+ 31 —3

T, 2 60 + 3t 46 + 3t

T3 3 60 +3t—1 20 +2

T 4 4043t —1 60+ 3t — 2
Ty s %1 20+ k 60 + 3t — 2k +2
Ty % | 6043t—2k+1| 4043t —k+1

k=3,...,06-1
T T T, [ 20-1 [ " 30+3t+1 [ a0+3t+1 |

i 26 4643 +2 36

The small, medium, and big difference labels for triangles T, ..., Typ are given in Table 5. Again, the
triangles are grouped in pairs, using two dummy triangles D; and D, which are paired with T5 and Tyg_j,
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respectively. Notice that for every uv on a T; with i < 20 and every u'v' on a T; with j > 26, we have
f(v) — f(u) # f(v') — f(u') since the smallest possible magnitude for uv is 6 = 3t + 1, while the largest
possible magnitude for u'v’ is 3t — 2. Hence, in this case, we do not have to flip triangles Tpg 1, . . ., Tog+ . Note
also that the largest magnitude is 60 + 3t — 2 = 3n — 2, and there is exactly one arc with this magnitude.

Table 5. The difference labels of the arcs of Ty, ..., Toy, D1, D, for case B.

Pair Triangle | Small-dl Medium-dl Big-dl
T 20 10130 4 I (T T—y
7o = (T1, T2) T, 20 — (40 + 3t — 2) 60 + 3t — 2
R Ts | —(20-1)| —(40+3t-3) | 60+3t—4 |
m = (T3, Ts) T, 201 4043t—5 — (66 + 3t — 6)
N Dy | —-(20-2)| —-(46+3t-5) | 60+3t—7 |
| 2=0us) | | 20-2 | 40+3-7 | —(e0+3i-9) |
0 = (Tog, Tog 1) Ty | —(20—k) | —(40+3t—3k+1) | 660+3t—4k+1
k=3...,60-2 Tyuir | 20—k | 40+43t—3k—1 | —(60+3t—4k—1)
| Ty | —(0+1) | —(0+3t+4) | 204+3t+5 |
o =MD b | eer | ewste2 | —(0+30+3) |
- Too 1 6 613+ 2 ~ (20330 +2)
7o = (Tao—1, Too) Toe 6 —(6+3t+2) 20+ 3t +2

Since 8 = 3t 4+ 1, we have 6 4 3t + 2 = 20 + 1, which means that no medium-dl can be equal to a small-dl.
The small, medium and big difference labels on T7, . . ., Tpg_p are exactly the same as those of Table 3. Using the
same arguments, as in the previous case, we can avoid conflicts involving medium and big difference labels of
T, ..., Tg_1. Consider now 71y:

e The medium difference values of 71y can only be conflicting with the medium-dl of Dy, but we don’t care
about such a conflict since D, is a dummy triangle;

o The big difference values of 77y can only be conflicting with the medium-dl of a T. For this to happen, we
should have 260 + 3t + 2 equal to 46 + 3t — 3k + 1 or 46 + 3t — 3k — 1, or equivalently k equal to ZQT’l = 6ixl

or MT% = 6t—;1 which is impossible since k is an integer.

CaseC:n=20+t—1,0 € {3t—1,3t} .

Again, consider the vertex labels f(v;) on Ty, ..., Tog_1 shown in Table 6. Given a gdl f’ for tC3 with at

most one arc of magnitude 3t — 2, and all other arcs of magnitude strictly smaller than 3t — 2, we set f(v;) =

f'(v;) +30 —1fori=60—2,...,60+ 3t — 3. One can easily check f is a bijection between {vy, ..., vgg13: 3}

and {1,...,60 + 3t — 3 = 3n}. The small, medium, and big difference labels for triangles T, ..., Ty are given

in Table 7.

Table 6. The labeling of T, ..., Trp_1 for case C.

Triangle T; | f(v3i—2) f(vsi—1) f(v3i)
T 1 20 6013 —6
T, 2 66+ 3t —3 40 4+3t—2
T 3 66 + 3t — 4 20 +1
T, 4 4013t -3 60 +3t —5
Ts 5 20+ 2 60 +3t—7
Ty %k | 6043t—2k—2 | 40+3t—k—1
Torir 2%+ 1 20+ k 60+ 3t — 2k — 3
k=3,...,0—-1




Open J. Discret. Appl. Math. 2019, 2(3), 38-55 50

Table 7. The difference labels of the arcs of Ty, ..., Tog_1, D1 for case C.

Pair Triangle Small-dl Medium-dl Big-dl
T 20 -1 40+ 3t —6 —(60 +3t—7)
DA S | -@o-n) | @esd-y | 6035 |
T3 —(260—2) —(46 + 3t —5) 60 43t -7
m = (T3, Ts) T, 202 4043t —7 — (60 + 3t —9)
N Dy | - —(26-3) | —(40+3t-7) | 60 +3t—10 |
DSl | 20-3 | d0430-9 | —(60+3-12) |
T = (T2k1T2k+1) TZk —(29—](—1) —(49+3t—3k—1) 69+3t—4k—2
k=3,...,06—-1 Toki1 20 —k—1 4043t —3k—3 —(60 + 3t — 4k — 4)

Again, the triangles are grouped in pairs, using one dummy triangle D; which is paired with Ts. Notice
that for every uv on a T; with i < 20 — 1 and every u'v’ on a T; with j > 20 — 1, we have f(v) — f(u) #
f(v") — f(u') since the smallest possible magnitude for uv is > 3t — 1, while the largest possible magnitude
for u'v’" is 3t — 2. Hence, also in this case, we do not have to flip Tpg,1,..., Trg+s Note also that the largest
magnitude is 60 + 3t — 5 = 3n — 2, and there is exactly one arc with this magnitude.

Since 0 < 3t + 1, we have 0 + 3t > 20 — 1, which means that no medium-dl can be equal to a small-dl
Using the same arguments, as in the previous cases, we can avoid conflicts involving 7, ..., 7g_1.

If there is j > 2 such that i — T, then assume there is i > j such that 7; — TT;. If i < 20/3, then
min{|b}|, |b?|} > 60 +3t —4(20/3) — 4 = 100/3 4 3t — 4. It follows that j < (20 +3)/9 else max{|m]1-|, \m]2|} <
40 +3t —3(20 +3)/9 — 4 = 100/3 + 3t — 5. Hence min{|b/|, [b?} > 60 + 3t — 4(20 +3)/9 — 4 = 460/9 +
3t —48/9 > 460 + 3t — 4, which contradicts mt; — 1. Hence, we necessarily have i > 20/3, and since j cannot
belong to ] U J', we conclude that j was not flipped. Hence, by flipping 7ro, we get 71; + 7o for all j > 2.

Since the parity of m} and m? is the opposite of the parity of b} and b? for all i > 2, we have mtj - 1 for
all j > 2. Hence, the only possible remaining conflict is between 77y and 7r1. This can only occur if b} = b} and
1 was flipped. In such a case, we flip 771 to remove this last conflict.

CaseD:n=20+t—1,0=3t+1

Consider the vertex labels f(v;) on Ty, ..., Trg_1 shown in Table 8. Given a gdl f’ for tE; with at most
one arc of magnitude 3t — 2, and all other arcs of magnitude strictly smaller than 3t — 2, we set f(v;) =
f'(v;) +30 —1fori=60—2,...,60+ 3t — 3. One can easily check f is a bijection between {vy,...,vgg13; 3}
and {1,...,60 + 3t —3 = 3n}.

The small, medium, and big difference labels for triangles T, ..., Top are given in Table ??. Again, the
triangles are grouped in pairs, using one dummy triangle D7 which is paired with T5. Notice that for every
uv on a T; with i < 20 — 1 and every 4’0’ on a T; with j > 20 — 1, we have f(v) — f(u) # f(v') — f(u')
since the smallest possible magnitude for uv is § — 2 = 3t — 1, while the largest possible magnitude for u'v’ is
3t — 2. Hence, also in this case, we do not have to flip Trg11, ..., Top++- Note also that the largest magnitude is
60 + 3t —5 = 3n — 2, and there is only one arc with this magnitude.

Since 8 = 3t + 1, we have 0 + 3t + 1 = 26, which means that no medium-dl can be equal to a small-dl.
The small, medium and big difference labels on T, ..., Try_5 are exactly the same as those of Table 7. Using
the same arguments, as in the previous case, we can avoid conflicts involving 7, ..., 7g_3.

Consider now 71p_, and 7g_1. The medium magnitudes |m}_,|, [m3_,|,|m} | and |m3_,| do not appear
on any other triangle. Also, the medium magnitudes ona 7ty with2 <k < —3 areequal to46 + 3t -3k —1 =
15t — 3k + 3 or 46 + 3t — 3k — 3 = 15t — 3k + 1, which mean that they are all equal to 0, or 1 mod 3. Hence,
the big magnitudes |b2 ,| = |b3 ;| = 260 + 3t +3 = 9t + 5 do not appear on any other triangle as medium
magnitude. Therefore, these two big magnitudes will not be conflicting if we either flip both 791 and 7y,
or none of them. The only remaining possible conflicts involve a medium-dl ona T; (i < 6 —2) and bj_, or
b,
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Table 8. The labeling of Ty, ..., Tpg_1 for case D.

Triangle Ti f(?)3l'_2) f(?)3l'_1) f(?)3l')
T: 1 20 60 + 3t — 6
T 2 60 +3t—3 40 + 3t -2
T3 3 60 +3t —4 20+1
Ty 4 40 +3t—3 60 43t —5
Ts 5 2042 60 +3t—7
To 2k 60+3t—2k—2 | 40+3t—k—1
Tops1 2k +1 20+ k 60 +3t—2k—3
k=3,...,6-3
[ Ts | 204 [ 460+3t—1 [ 30+3t+1 |
Too_3 20-3 40 +3t+2 30 -2
To_» 20— 2 360 + 3t 40 43t +1
Too_1 20—1 30 —1 46 + 3t

Table 9. The difference labels of the arcs of Ty, ..., Tog_1, D1 for case D.

Pair Triangle| Small-dl Medium-dl Big-dl
T 20 1 10+3-6 —(60+3t—7)
I | —@o-1) | —@6+3-4) | 0+3-5 |
T3 —(20 —2) —(46+3t—5) 60 +3t—7
m = (T3, Ts) T, 202 4043t —7 — (60 + 3t —9)
N Dy | —(20-3) | —(40+3t—7) | 60+3t—10 |
| =) | 20-3 | 40+3-9 | —(66+3-12)
7t = (Top Topr 1) Ty | —(20—k—1)|—(404+3t—3k—1)| 66 +3t—4k—2
k=3,...,0-3 Tosr | 20—k—1 | 40+3t—3k—3 |—(60+3t— 4k —4)
P Tog_3 | —(0+1) | —(0+3t+4) | 2043t+5 |
o2 = eaTo) gy, | ee1 | 0+43t+2 | —(20+3t+3) |
- Tog 1 b 643631 (135 1)
Mo = (o Tooa) | om0 (9-2) | —(043t45) 20+ 3t +3

Assume there is a triangle T; with magnitude 26 + 3t + 1 = [b}_,|. This means that 26 +3t +1 < 40 +
3t —3i — 1, which is equivalent to i < (20 —2)/3. Hence, 7t; was not flipped. Also, if there is a triangle T; with
magnitude 20 + 3t +5 = béfz, then j < i < (26 — 2)/3, which means that 7T was not flipped. Now,

e If there is a triangle T; with medium-dl —(26 + 3t 4 1), then ml1 = bé_l, and mlz_z = —bé_l +4 =
20 + 3t +5 = b}_,, and we can avoid both conflicts by flipping both 7751 and 775_5;
o If there is a triangle T; with medium-dl 26 + 3¢ + 5, then mJZ = 572, and m}+2 = —bfl)f2 +4=—-(20+

3t+1) = b}_,, and we can avoid both conflicts by flipping both 775_1 and 74_5.
e If there is no triangle with medium-dl — (26 + 3t + 1) or 20 + 3t + 5, there is no conflict.

O

. We_> already know from Lemma 5 that EZ} + E; has a gdl. We now show that this is also the case for
Cqs+nCs,n > 2.

e
Lemma 8. Cy4 + nCgz has a gdl for every n > 1.

Proof. The graphs in Figures 9, 10, 11, 12, 13, 14 and 15 show the existence of the desired gdl for 2 < n < 8.
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For n > 9, we know from Lemma 7 that there is a gdl for (n 4+ 1)C3, which can be obtained by performing
a set F of flips, starting from the labelling f defined in Tables 2, 4, 6, and 8 for cases A, B, C and D, respectively.
We distinguish two cases.
y inserting a new vertex vy between

_>
e For cases A and B, we consider the graph G obtained from (n+1)Csz b
by a C4 with vertex set {vg, v4, U5, V6 }

vs and vg. More precisely, G is obtained by replacing T in (n +1)C3

i
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and arc set {v405, U500, VgVe, VsV4 }. We then define f’ by setting f'(vg) = 1 and f'(v;) = f(v;) + 1 for
i =1,...,3(n+1). Clearly, f’is bijection between {vy,...,v3(,41)} and {1,...,3n +4}. In order to
prove that by performing exactly the same set F of flips, we get a gdl for G, it is sufficient to show that
the difference labels on v5vy and vyvg cannot appear on other arcs of G.

= |f'(vo) — f'(vs)| = |1 — (60 + 3t +1)| = 66 + 3t, which means that v5v( has a magnitude larger than

that of any other arc in G.
- f'(ve) — f'(vg) = (40 +3t+1) —1 = 46 + 3t. Since this value is strictly larger than any other

medium magnitude in G, the difference label on vyve can only be conflicting with a big-dl on a T;
with i > 5. But this does not occur since these big difference labels have the opposite parity of
40 + 3t.

e For cases C and D, we consider the graph G obtained from (1 + 1)C_3,> by inserting a new vertex vy between
v9 and v;7. More precisely, G is obtained by replacing T3 in (1 + 1) C3 by a C4 with vertex set {vy, vy, vg, v9 }
and arc set {v;vs, v3v9, V9V, Vovy}. We then define f’ by setting f'(vyg) = 3n+4 = 60 + 3t — 2 and
fl(vi) = f(vj) fori =1,...,3(n+1). Clearly, fis bijection between {vy, ..., 03,41y} and {1,...,3n +4}.
In order to prove that by performing exactly the same set F of flips, we get a gdl for G, it is sufficient to
show that the difference labels on vyv; and v9vy do not appear on other arcs of G.

- f'(v7) — f'(vg) = 3 — (60 + 3t —2) = —(60 + 3t — 5). The same difference label appears on T, but
with an opposite sign. These two arcs could be conflicting if exaclty one of 71y and 7 is flipped,
but this does not occur since T and T3 have big difference labels of the same magnitude, but with

op osite 51 ns
- (I; = (60 + 3t —2) — (260 + 1) = 46 + 3t — 3. Since this value is strictly larger than any
other rnedlum magnitude in G, the difference label on v9vy can only be conflicting with a big-dl on

a T; with i > 5. But this does not occur since these big difference labels have the opposite parity of
40 + 3t — 3.

O

All together, the results shown in the eight lemmas of this section can be summarized as follows.

Theorem 1. If G is the disjoint union of circuits, among whlch at most one has an odd length, or all circuits of odd
length have 3 vertices, then G has a gdl, unless G = C3 or G = Cz + C3

3 Conclusion

As mentioned in the introduction, it is an open question to determine the values of n for which na; has
a graceful labeling, i.e., an injection f : V — {0,1,...,q} such that, when each arc xy is assigned the label
(f(y) — f(x)) (mod q+ 1), the resulting arc labels are distinct. Considering graceful difference labelings, we
could show that nC3 has a gdl if and only if n > 2. We have also proved additional cases that support the
following conjecture.

— =
Conjecture 1. If G is the disjoint union of circuits, then G has a gdl, unless G = Cz or G = C3 + Cs.
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