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Agarwal et al. (2021) established the extension of several fundamental contiguous relations for Gg. Our aim in this work is to
investigate several properties of differentiation formulas, differential equations, recursion relations, differential recursion
relations, confluence formulas, series representations, integration formulas, and infinite summations for Horn’s hypergeometric

function Gy of three variables. Some well-known particular cases have additionally been given.

1. Introduction and Notations

The major development of the theory of hypergeometric
functions was carried out by Gauss in his famous work of
1812. In [1], Horn’s functions of two variables were initiated
in the years 1889 and 1931. This paper is considered as a real
starting of rigor in mathematics. Several nice papers dealing
with hypergeometric functions have been investigated earlier
by Euler and others, but Gauss who the first who made an
interesting work of the series that defines this function.
Hypergeometric series are very useful in mathematics. Note
that almost all of the elementary functions of mathematics
are either hypergeometric, limiting cases of a hypergeo-
metric series, or ratios of hypergeometric functions. It is well
known that there exist several types of hypergeometric func-
tions of three variables. A number of contemporary studies
have been devoted to the development of the theory of
hypergeometric functions of two or more variables and its
important applications, for example, wireless communica-
tion theory, nonlinear differential equations, and nonlinear
cubic-quintic duffing oscillators, and so on, see [2-6]. Horn

introduced four families of hypergeometric functions of
three variables each. The Horn functions have several appli-
cations, for example in the theory of algebraic equations,
statics, operations research, and so on. Finally, the situation
completely changed due to the publication of Yang’s study,
whose book was published by Academic Press [7].
Motivated mainly by these works, Sharma [8] studied
properties for Appell functions. Sahin and Agha [9] intro-
duced and studied of recursion formulas for Horn functions.
In the recent papers, as Bezrodnykh [2], Dhawan [10], Exton
[11], Karlsson [12], Khan and Pathan [13, 14], Padmanab-
ham [15], Sahin [16], Sahai and Verma [17], Saran [18,
19], Srivastava [20, 21], Srivastava [22], Vidunas [23], Wang
[24], it has been obtained various results about properties for
hypergeometric functions of three variables. In our present
work, we establish some new differentiation formulas, differ-
ential equations, recursion relations, differential recursion
relations, confluence formulas, series representations, inte-
gration formulas, and infinite summations for the Horn
hypergeometric function Gy of three variables by using the
technique of Ibrahim [25], Ibrahim and Rakha [26], Rakha
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and Ibrahim [27], Rakha et al. [28], Kim et al. [29] and
Brychkov and Savischenko [30-32]. Pathan et al. [33], and
Shehata and Shimaa [34, 35] found 7 and 11 hypergeometric
series in two variables of order two. We shall derive these G
series from our viewpoint. As an application, we shall show
that Theorem 2.2 leads to partial differential equations, The-
orem 3.1 and Theorem 3.2 lead to differential recursion
formulas, Eqgs. (42)-(9) lead to series representations, Theo-
rem 6.1 and Theorem 6.2 lead to integral representations
of Euler type, and Theorem 7.1 leads to infinite summations
for Horn’s series Gy of three variables.

For the purposes of our present study, we begin by recal-
ling here the binomial identities as follows:
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The Horn’s function of three variables is defined by
[22, 36]:
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(v satisfies conditions (1.4) and (1.5), T # 0,-1,-2, ---, |x| < 1, [y| < L, |z| < 1).

(4)

The following basic lemma (see Srivastava and Mano-
cha ([36], pp. 100)) given below is useful.

kZK;
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The integral operator & is given by Abul-Ez and
Sayyed, and Sayyed in [12, 37]:
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where I=J,+3,+3,,

S, =1/z[;dt.

S, = 1/x [ du, :‘Ty =1/y[dv and

Advances in Mathematical Physics

2. Differentiation Formulas

We first give the differentiation formulas and partial differ-
ential equations for the function Gg.

Theorem 2.1. The derivative formulas hold: true for r € N,
se€N and meN:

0" o 0

_ W) (V) (@),
oxm 9y 977 BT Gy

(T) r+s—m

c(vtrts—-mut+mv+s,

(7)

+rTHr S -mMsX, Y, 2).

Proof. Differentiating Gzr-times with respect to z, s-times
with respect to y and m-times with respect to x, we
obtain (7).

As special cases for m =r =s, we have

999 o - 00, g
ox" 0y 0z"  ° (1), B

(VLU LYV THTX, Y, Z).
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O

Theorem 2.2. Each of the partial differential equations
hold: true:

0,(0,+6,-0,+7-1)-y(0,+6,-0,+0v)(0,+v)|Gz =0,
©)

0,(60,+0,-0,+7-1)~2(0,+0,-0,+0)(0, +©)|Gz =0,
(10)

where

—xi,e 8,0 :zi. (11)

9 = -,
* axyyayz 0z

Proof. Applying the differential operators into (4) and
simplifying, we obtain (9)-(10).

We note that the results mentioned in Theorem 2.1 and
Theorem 2.2 are generalizations of the results in Theorem
3.3 and Theorem 3.5 in the published paper [38]. O

3. Contiguous Relations

Here, we establish some recursion formulas and contiguous
relations for the function Gy with respect to parameters.
We start with the following theorem. The proofs are
straightforward computations.
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Theorem 3.1. The Horn hypergeometric function Gy satisfies Gy(V+7, h v, 03 T5%, 9, 2)
the following relations:

L
ZGB+;v+r—i(9y+ez_9x)GB (13)
Gp(V+ 1, V, W5 T3 X, 9, 2)

r 1
= H|:1+ U+r_i(Gy+GZ—Gx)}GB(v,y,v,w;T;x,y,z)
i1

(12)

v+k+8-n-1 u+n-1 v+k-1 w+e-1
k+€-n n k ¢ 0 ke (14)

(o)
Gi(v, U, V, W T3 X, 9, 2) = x"y*z".
(0 »%) n’gzo <T+k+£—n—l> ’

(VT =LV, 05T X, Y, 2).

Proof. From (4) and (1), we rewrite in the form

k+8-n
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=7+ ¢in (14), we have
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X"y z".
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Using (14), we rewrite (15) as follows
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where

a1 L [v+k+e-n+i
v = I, (T (17)

0<a; <a,0<B,<B,0<y, <y,0<6,<6,and0<¢ <e.

(18)

Ifweputa=r,a =r—land f=f=y=y,=0=0,=
e=¢ =0in (16), we get
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Differentiating
respect to x gives

sl
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Using (21) and (22), we get

G+ 11V, w;T;%,,2) =Gp(v+71~

1
to [6,+6,-0,]Gy
Hr-L v, 0;T;X,),2)

H@+@—@ﬂG
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=114 —
v+ —

(Hr-L v, 0;T;x,9,2).
(23)

As special cases, letting r =1 in (23), we get

Gy(v+ 1L, Vv, w;T;%,¥,2)

1 (24)
= {1+ 5(9),+6Z—(9X)}GB(v,y,v,w;T;x,y,z:).

In (23) and r = 2, we obtain
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1
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Combining of the above, we have
. . 1
Gp(V+2, (v, W3 T5X,9,2) = 1+m(0),+92—0x)

1
: [1+ 5(9),+92—ex):|GB(U,[/l,V,(U;T;x,y,Z).

(26)
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(27)

Using (23), we can easily obtain the formula (13). O

Now, we are going to deduce some recurrence relations
for Gy(v,p+rcw;T;%9,2), Gy, V+1,W;T;5X,9,2)
and Gz(v, , v, W+ 1;T5%, ¥, 2).
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Theorem 3.2. The function Gy satisfies the following recur-
rence relations:
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Using (17), we get
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[e¢]
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We can rewrite (35) in the form
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Using (7), we get (29). Similarly, if we take y =7, y, =7 — 1
and a=a; =f=,=6=8,=e=¢, =0 in (16), we get (30)

x"y*z".

<T+k+€—n—1>
k+8-n

and (31). Again, if we take §=r,8; =r-land a=a, ==
B, =y=v,=e=¢ =0in (16), we get (32) and (33). O

4. Confluence Formulas
The following confluence formulas follow by using the equa-

tion (4) via a direct computation.
We recall the relation as follows:

e
(3) - (E) L a——0 (39)
ale \a
Using (4) and (39), we have
T
lim GB( sV, w5 — ;x,y,2>
a—0
B R RN
a—0 &0 nlkle(z/a)rtn (40)
=(1- x_M I—U - 1- wa Tx
‘( 5)( ?)( )’a\
<1 ) <1 Uz‘ <1
bl 7)/ > ; .

Expanding the expressions (1 — (t/v)x) ™", (1 - (viT)y)™"
and (1 - (v/7)z)™ by applying the binomial theorem (i.e.,
the expansion of a | F,, function), we get the transformation
formula:
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5. Series Representations

nk.
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Here, we derive the series representations for Gy.

Using (4) and the summation with respect to n, k or ¢,
we get
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Similarly, after evaluating the finite sums, it follows that

(42)

Gp(U, UV, ;T3 X, 9, 2)

(e
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1-7—k—-tu;1-v—k-€;x)yk2;

).

k'E'
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For special case, by taking y =z, we get
Gp(, sV, ;T3 X, 9, Y)
I'l-v-w)& (v),(V), I(1-k-v
) (F(l—v)) k('(ilj(r)(ﬁ—(k—v—a)))ykzpl (45)
k=0""\"/k

(W l-k-1;1-k-v;x);(]x| <1, ]y <1).

Thus, we have shown that the above series (42)-(44) con-
verge in the indicated regions.

6. Integration Formulas

We present here the integral representations and evaluation
of integrals for the function Gg.



Theorem 6.1. For |t| < 1, the integration formulas for Horn’s
function Gg:
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Proof. With the help of the integral operator I, we get the
formula
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Applying the integral operator J,, we have

:‘?xGB(v, P Vs 05T 5%, Y, 2)

y ( ! ) (st (8)n (Vi @)g n ke
0
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Iterating this integral operator &, on Gy for r-times, we
get (47). Similarly, we obtain (48) and (49). O

Theorem 6.2. The integral representations for Horn’s func-
tion Gg hold:

Gp(v, sV, W3 T3 X, Y, 2)

F(T) ! v-1 T-0-1
= 7 1- F > Vs W3—35—
T()T(z - v) Jot (=" (“ Vs Zt)dt
(52)
where
i K

Fo(i, v, w55, , 2) Ex"y 2 (53)

0 o nlkl{{l
Gp(0, sV, 03 T5X, ), 2)

I'(r)

L)z =o)L (@)L ()T (@) (1= @) (1=v)[(1-w)
J [ } J BT (L= ) (1= ) (- 1) (11

t
x,F, (1;—;%) VEo(Lmspt ) Fo(Li=szt it )dt dt,dtsdt
1

<L |ytts| < 1, \zt1t4|<1>
f

<\x|<1 vyl <1, |z|<1

(54)

Proof. If k+¢€—n is a non-negative integer and using the
integral definition of the Beta function, we have

Ve - I
(Disen TOI(T-0)

1
J tv+k+€—n—l(1 _ t)‘r—v—ldt. (55)
0
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Therefore,

Gy(V, sV, 05T 5X, 9, 2)

_ I Vv (@), (@)g ke
B I'(v)I'(t-v) Z n!k!lél x ykz

n,k,=0

.Jl tu+k+€—n—1(1 _ t)‘r—u—ldt
0

___IM i (1), (V)i (@),

T T)I(t-v), &, nlke

.Jotv 1( ) ()/t) ( ) (1 _t)‘r—u—ldt
= F(T) ' v-1 T-v-1 X
_mjot (1_t) 3F0(‘u,v,w, ,;,yt,zt)dt.

(56)
The equation (54) can be proven as the proof of

equation (52). O

7. Infinite Summations for G,

Here, we give the infinite summations for Horn’s func-
tion Gg.
Using the binomial theorem [36], we get

(1-t)“= iﬂtr, It] < 1. (57)

r!

Theorem 7.1. For |t| < 1, the infinite summation for Horn’s
function Gg:

Z%GB(v+m,y,v,w;T;x,y,z)tm
m=0 :
v y 4
1- , 1—n, 2 &
=(1-t) GB<v,uva)Tx( t), -7 1—t)
.(\x|<1, ly| < 1,|z| < 1, |x(1 - t) ﬁ‘ &‘q),
(58)

2

=(1—t)’“GB(v,y,v,w;T;

gL U+m Vv, ;T X, 2)t"

<)
-t

(VW V+mw;T;x,y,2)t"

(Il <1y <12

> Dy

m=0

:(l—t)’VGB(v,y,v,w;T;x, ILt’Z);

<1),

(60)

-(|x| <Ly|<Llg|< I, |——

9
Z (w)'m Gy(v, vV, +m;T5%, Y, 2)t"
=0 m:
=(1-1) ‘”GB<v,#,v W3 T;% Y, IZ t)' (61
(w1 =i <!)
o0
ZOQGB(U,‘M,V,w;T+m;x,y,Z)tm
B X
=(1-1) TGB(v,y,v,w;T;may(l—t)’z(l‘t));
(W<t <nld < b =]
<Ly(I-n]<Lla(1-1)]<1).
(62)

Proof. With the aid of (4) and (57), we directly obtain the
results (58)-(62). 0

8. Conclusions and General Remarks

Our paper is generally based on the extension of Horn’s
hypergeometric functions of two variables. A few specializa-
tions relevant to the present discussion have also been
derived from results of papers [33-35, 38]. We focused on
the generalization of the Horn’s function Gy of three vari-
ables and presented some partial differential equations, dif-
ferential recursion formulas, series representations, integral
representations and infinite summations.

In Yang’s study, numerous special functions are summa-
rized, and their properties are detected, which can be utilized
for applications immediately, and readers can create a new
special function for their own practical applications.

To be complemented, Yang’s study [7] is very useful for
physical and engineering applications. It can attainable to all
students, researchers, physicists, and engineers without the
necessity of a profound knowledge of mathematics. Any
reader can be researched for their beloved shells in the field
of special functions.
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