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Abstract

In this paper, we define and investigate the generalized Friedrich sequences and we deal with, in detail, two
special cases, namely, Friedrich and Friedrich-Lucas sequences. We present Binet’s formulas, generating
functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some
identities and matrices related with these sequences. Furthermore, we show that there are close relations
between Friedrich, Friedrich-Lucas and third order Jacobsthal, modified third-order Jacobsthal, third order
Jacobsthal-Lucas numbers.

Keywords: Friedrich numbers; friedrich-Lucas numbers; Jacobsthal numbers; third order Jacobsthal numbers;
modified third-order Jacobsthal numbers; third order Jacobsthal-Lucas numbers.
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1 Introduction

Third-order Jacobsthal sequence {Jp }n>0 (OEIS: A077947, [1]), modified third-order Jacobsthal sequence { Ky, }n>0
(OEIS: A186575, [1]) and third-order Jacobsthal-Lucas sequence {jn}n>0 (OEIS: A226308, [1]) are defined,
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respectively, by the third-order recurrence relations

Itz = Jnt2t+Jny1 +2Jn, Jo=0,J1i=1,Jo=1, (1.1)
Knys = Kpyo+ Kny1 +2K,, Ko=3,K1=1,Ky =3. (1.2)
Jn+3 = Jnt2tint1 + 200, Jo=2,51=1j2=05, (1.3)

The sequences {Jn}n>0 and {jn}n>0 are defined in [2] and {K,},>0 is given in [3]. For more details on the
generalized third-order Jacobsthal numbers and its special cases, see [4].

The sequences {Jn }n>0, {Kn}n>0 and {jn }n>0 can be extended to negative subscripts by defining

1 1 1
Jon = 75*]7(7171) - EJf(n72) + iJ—(nfii)v
1 1 1
K., = —=K_(p_1y—=K_(p_ ~K_(p_
=1 = 5B -(n-2) T 58 -(n-3),
. _ 1 1 " 1.
J-n = 2]—(n—1) 2]—(n—2) 2.77(1173)7

for n =1,2,3, ... respectively. Therefore, recurrences (1.1)-(1.3) hold for all integer n.

Now, we define two sequences related to third-order Jacobsthal, modified third-order Jacobsthal and third-order
Jacobsthal-Lucas numbers. Friedrich and Friedrich-Lucas numbers are defined as

Fo=F, 14+ F,_2+2F,_3+1, with Fo =0,F1 =1,Fa =2, n >3, (1.4)

and
Cn=Ch1+Ch2+2C,_3—3, with Co=4,C1=2,C2=4, n>3, (1.5)
respectively. The first few values of Friedrich and Friedrich-Lucas numbers are
0,1,2,4,9,18,36, 73,146, 292, 585, 1170, 2340, 4681, ...
and
4,2,4,11,16,32,67,128, 256,515, 1024, 2048, 4099, 8192, ...

respectively. The sequences {F,} and {C,} satisfy the following fourth order linear recurrences:

F, = 2F, 1+ F,_3—2F,_u4, Fo=0,Fi=1,F, =2 F3 =4, n >4, (1.6)

Cn = 20p14+Ch_3—-2C—4, Co=4,C1=2,0,=4,C3=11, n > 4. (1.7)
There are close relations between Friedrich, Friedrich-Lucas and third-order Jacobsthal, modified third-order
Jacobsthal, third-order Jacobsthal-Lucas numbers. For example, they satisfy the following interrelations:

3F, = Jnt2+2Jn—1,
2C, = —Jnt2+7Jng1 —3Jn +2,
147F, = 17Knya+ 10K,11 — 4K, — 49,
Cn = Ki+1,
18F, = Jjn+2 +3Jnt1 — Jn — 6,
24Cn = 11ljng2 — 21jnt1 + 19jn + 24,
and
Jnsr = Fopr— Fo,
147J, = 19Cpi2 — 9Cni1 — 16Cy + 6,
4K, = Fui2+ 13F41 —23F, — 3,
3K, = Cpi3—Chi2—Chy1+Ch,
Jn = —Fays+3Fni2 — 2F,,
495, = —5Cny2 +23Cx41 +30C, —48.
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The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e., Friedrich,
Friedrich-Lucas numbers). First, we recall some properties of the generalized Tetranacci numbers.

The generalized (r, s, t, u) sequence (or generalized Tetranacci sequence or generalized 4-step Fibonacci sequence)
{W,(Wo, Wi, Wa, Ws;r,s,t,u) }n>o (or shortly {Wy,}n>0) is defined as follows:

Wp =1rWhno1 4+ sWh_o +tW,_3 +uW,_4, Wo=co,Wi=c1,Wa=co,Ws=c3, n>4 (18)
where Wy, W1, Wa, W3 are arbitrary complex (or real) numbers and r, s, ¢, u are real numbers.

This sequence has been studied by many authors and more detail can be found in the extensive literature
dedicated to these sequences, see for example [5,6,7,8,9,10,11,12,13]. The sequence {Wp,},>0 can be extended
to negative subscripts by defining

t s r 1
W_pn = _wa(nfl) - wa(n72) - awf(n73) + wa(n74)

for n =1,2,3,... when u # 0. Therefore, recurrence (1.8) holds for all integers n.
As {W,} is a fourth-order recurrence sequence (difference equation), its characteristic equation is
2 =5 —tz—u=0 (1.9)

whose roots are «, 3,7, d. Note that we have the following identities

at+B+y+6 = 1
aft+oy+ad+By+Bi+v5 = —s,

affy +afd+ayd+ By6 = t,
afyd = —u.

Using these roots and the recurrence relation, Binet’s formula can be given as follows (which can be found in
the literature, for completeness, we include the proof):

Theorem 1.1. (Four Distinct Roots Case: a # 8 # v # §) For all integers n, Binet’s formula of generalized
Tetranacci numbers is

pra” p28" p3y"” pad”
M= e B e-0  B-aB-6-0 " G-at-A0-0 G-ab-ae-n
where
pr = Wi—(B+~+8)Wa+ (By+ B+ ~v5) W1 — By6Wo,
p2 = Ws—(a+v+)Wa+ (ay+ ad +v0) Wi — aydWo,
ps = Ws—(a+B+)Wa+ (af+ ad + B0)W1 — afdWo,
pa = Ws—(a+B+7)W2+ (af+ay+By)Wi —afyWo.

Proof. If the roots a, 8,7, of (1.10) are distinct, then (the sequences (a™)n>0, (8")n>0, (7")n>0 and (6™)n>0
are solutions of (1.8) and) the general formula of W, is in the following form:

Wn = A1a” + Aaf™ + Asy™ + Asd™

where the coefficients A;, Az, A3 and A4 are determined by the system of linear equations

Wo = A1+ Ay + Az + Ay

Wi = Aia+ AB+ Azy+ Add
Wo = A1d® + A2B° + A3y + Asd®
Wi = Aid® + A28° + A3y + Asd®
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Solving these four simultaneous equations for Wy, Wi, W2 and W3, we obtain the required result. [J

Usually, it is customary to choose «, 3,7, d so that the Equ. (1.9) has at least one real (say «) solutions. Note
that the Binet form of a sequence satisfying (1.9) for non-negative integers is valid for all integers n (see [14]).

Next, we consider two special cases of the generalized (7, s,t,u) sequence {W,} which we call them (r,s,t,u)-
Fibonacci and (r, s, t,u)-Lucas sequences. (r, s, t, u)-Fibonacci sequence {Gr }n>0 and (r, s, ¢, u)-Lucas sequence
{Hn}n>o0 are defined, respectively, by the fourth-order recurrence relations

Gnta = 1Gpy3+ $Gni2 +tGni1 + uGy, (1.11)
Go = 0,Gi=1,Go=71,G3=71"+s5,

Hpya = rHpy3+sHpio +tHpp1 +uHy, (1.12)
Hy = 47H1:r,Hg:2s+r2,H3:r3+3$r+3t.

The sequences {Gr}n>0 and {Hn}n>0 can be extended to negative subscripts by defining

G-n

t s T 1
——G_ n— --G_ n—2) = ~-G_ n— -G_ n—4),
2O T G2 = G —nes) + G (ng
t s T 1
H_ = ——H_ n— - —H_ n— - —H_ n—: —H_ n—4),
n g ) T ) T () T (g

for n = 1,2, 3, ... respectively. Therefore, recurrences (1.11) and (1.12) hold for all integers n.

For all integers n, (7, s,t,u)-Fibonacci and (r, s, ¢, u)-Lucas numbers (using initial conditions in (1.11) or (1.12))
can be expressed using Binet’s formulas as in the following corollary (by setting W,, = G, and W,, = H,, in
Theorem 1.1, respectively).

Corollary 1.2. (Four Distinct Roots Case: o # B # v # 0) Binet’s formula of (r,s,t,u)-Fibonacci and
(r, s,t,u)-Lucas numbers are

G an+2 ﬂn+2 ,yn+2 6n+2
"l Ba-Na-0  B-a)B-DF -0 - - -0  G-a)b-A0—7)
and
Hp=a" + " +7" +4",
respectively.

oo
Next, we give the ordinary generating function Y W,z" of the sequence W,.
n=0

Lemma 1.3. [9, Lemma 1] Suppose that fw, (z) = >, Wrz" is the ordinary generating function of the
n=0
generalized (r,s,t,u) sequence {Wy,}n>0. Then, > W,z" is given by
n=0

oo

Z W™ — Wo + (W1 — ’r‘Wo)Z + (Wz —rWy — SW())Z2 + (W3 —rWo — sW7p — tWo)ZS
ne 1—17r2— 522 —tz3 — uzt ’

(1.13)

n=0

The following theorem presents Simson’s formula of generalized (r,s,t,u) sequence (generalized Tetranacci
sequence) {W,}.

Theorem 1.4 (Simson’s Formula of Generalized (r, s,t,u) Numbers). [15] For all integers n, we have

Wpts Whao Wi o Wy Ws  Was Wh Wo
Whte Whia Wh Win—1 = ()" Wy  Wh Wo W_1
Wit W Who1 Wp_o W, W, W_1 W_o

Wn  Wpor Who Wy_s Wo W_1 W_o W_3

(1.14)
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The following theorem shows that the generalized Tetranacci sequence W,, at negative indices can be expressed
by the sequence itself at positive indices.

Theorem 1.5. [16, Theorem 1.] For n € Z, for the generalized Tetranacci sequence (or generalized (1, s,t,u)-
sequence or 4-step Fibonacci sequence) we have the following:

an == é(fu)in(ftsw&m + 6HnW2n - 3H721Wn + 3H2an + WOHZ + 2W0H3n - 3WOHnH2n)

—n—1 —n 1 1 -
= (=)' (Wan — HoWap + 5(H3L — Hop )W,y — E(Hi + 2H3, — 3Ha, Hp)Wo).
Using Theorem 1.5, we have the following corollary.

Corollary 1.6. [16, Corollary 4] For n € Z, we have

(a) 2(—uw)" ™G, = —(3ru® + t* — 3stu)?G3 — (25u — t2)?G2 3G — (—rt? — tu + 2rsu)?G2 Gy — (—st? +
252 u+4u® 4 rtu)2 G2 1 Gr +2(3ru? 3 — 3stu) ((—2su+ )Gz + (—1rt? —tu+2rsu) o+ (—st* +2s2u+
4% 4 1tu) Gt 1) G2+ 2(25u — t2) (—1t? — tu + 2rsu)Grg3Gri2Gr + 2(25u — t2)(—st® + 25%u + 4u? + rtu)
Gnt3Gn+1Gn — 2(—st2 + 25%u + 4u® + Ttu)(—rt2 — tu + 2rsu)Gn+2Gn+1Gn — 2Gs,ut + u2(—2su +
1) Gont3Gn+u (=1t —tu+2rsu) Gon 12 Gn+u? (—st? +252ut-4u +1tu) Gony1 G —2u? (25u—12)G2n Gtz +
2u2(77’t2 —tu+ 2rsu)GonGnia + 2u2(fst2 +28%u + 4u® + rtu)GonGny1 — 3u2(3ru2 +3— 3stu)GanGh.

(b) H_, = % (—u)™" (HS + 2H3, — 3H2an) .
Note that G_,, and H_,, can be given as follows by using Go = 0 and Hy = 4 in Theorem 1.5,
1

Gon = (~u)7"(~6Gsn + 6HnGon — 3H G + 3H3nG), (1.15)
H., = % (—u) ™" (H3 + 2Hgn — 3HznH,,) (1.16)

respectively.

If we define the square matrix A of order 4 as

A= Arsu = <117)

o O~ 3
o= O ®
—= O O o+
o O o=

and also define

Gn+1 sGp +tGrn_1 +uGn_o tGr +uGn_1 uGn
B — Gn SGrn-1 +tGn—2+uGpn_3 tGn_1+uGn-2 uGn-1 (1 18)
" Gno1 8Gn_2+tGn_3+uGn_s tGn_o+uGn_3 uGn_2 ’
Gnoo 8Gn_3+tGn_a +uGn_s tGn_3+uGn_a uGn_s3
and
Wit sW,, +tWa_1 +uW,_o tWy, +uW,_1 uWn,
U, — Wh SWh1 +tWhn_2o+uWp_3 tWyp_1 +ulWn_o uW,_1 (1 19)
" Whno1 sWho+tWhn_s+uWpn_y tWh_o+uWn_3 uW,_o ’
Whn_o sWyh_3+tWn_a+uWn_s5 tWp_3s+uWn_4 uW,_3

then we get the following Theorem.
Theorem 1.7. [9, Theorem 19] For all integers m,n, we have

(a) Bn=A", i.e.,

n

Gn+1 SGn + th—l + UGn_Q th + UGn—l UGn
- Gn sGn_1+tGn_o+uGn_3 tGn_1+uGn_2 uGn_1 (1 20)
Gn-1 8Gn_o+tGn_3+uGn_s4 tGpn_o+uGn_3 uGn_o ’ ’
Gn-2 8Gn-3+tGn_a+uGn_s tGn_3+uGn_a uGp_3

SO = 3
O~ O®
_ o O o
o oo
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(b) UA™ = A™U,.
(€) Unim = UpBm = BpUn.

Theorem 1.8. [9, Theorem 20] For all integers m,n, we have
Wn+m - WnGm+1 + anl(SGm + tG'mfl + UGM72) + Wn72(tGm + UG'mfl) + UWn73Gm~ (121)

In the next sections, we present new results.

2 Generalized Friedrich Sequence

In this paper, we consider the case r = 2,s = 0,¢t = 1,u = —2. A generalized Friedrich sequence {Wp}n>0 =
{Wn(Wo, Wi, Wa, W3)},>0 is defined by the fourth-order recurrence relation

Wp =2Wh_1 +Wn_3 —2W,_4 (2.1)

with the initial values Wy = co, W1 = ¢1, Wa = c2, W3 = ¢35 not all being zero. The sequence {W,},>0 can be
extended to negative subscripts by defining

1 1
W_, = §W7(n71) +W_tn-s — §W7(n74)
for n =1,2,3,.... Therefore, recurrence (2.1) holds for all integers n.

Characteristic equation of {Wp} is
22 a4 2=(P -2 -2 -1)=("+24+1)(z-2)(2-1)=0
whose roots are

a = 2

~1+iV3

—s

—-1-1iv3

—5
6 = 1.

Note that

at+B+y+d =

af +ay+ad + By + B+ o
afy + afd + ayd + Bvo
apfyd =

Il
= )

Note also that
a+ B+
af +ay+ By -1,
afy = 2.

The first few generalized Friedrich numbers with positive subscript and negative subscript are given in the
following Table 1.

|
—
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Table 1. A few generalized Friedrich numbers

n W, W_,

0 Wo Wo

1 Wi % (Wo + 2Wo — Wg)

2 W 1 (Wo + 4W1 — Ws)

3 W3 L (9Wo — Wa)

4 W1 —2Wy + 2W3 % (9Wo + 16Ws5 — 9W3)

5 Wo — AWy + 4W3 % (9WO + 32W7 — 9W3)

6 9Ws — 8Wo o (T3Wo — 9Ws)

7 Wi — 18Wo + 18Ws 5 (T3Wo + 128W5 — 73Ws)

8 Wa — 36Wo + 36Ws5 725 (T3Wo + 256W; — 73Ws)

9 T3Ws — 72Wo =15 (585Wo — 7T3Ws3)

10 W1 — 146W4 + 146W3 T124 (585W0 +1024W5 — 585W3)
11 Wa —292Wo + 292W3 S0 (585Wo + 2048W1 — 585W3)
12 585Ws5 — 584Wy Jo5 (4681W, — 585W3)

13 Wi — 1170Wo + 1170Ws = (4681Wo + 8192W; — 4681Ws)

Note that the sequences {F,} and {C,} which are defined in the section Introduction, are the special cases of
the generalized Friedrich sequence {W,}. For convenience, we can give the definition of these two special cases
of the sequence {Wy} in this section as well. Friedrich sequence {F} }, >0 and Friedrich-Lucas sequence {Ch, } n>0
are defined, respectively, by the fourth-order recurrence relations

F., = 2F, 1+ Fo_3—2F,_4, Fo=0,Fi=1,F,=2F; =4, n >4, (2.2)

Cn = QCn—l =+ Cn_g — QCn_4, C() = 47 Cl = 2,02 = 4, 05 = 11, n Z 4.

The sequences {Fy, }n>0 and {Cp}.>0 can be extended to negative subscripts by defining

1 1
e = at—(n— F—n—‘ _7F—n— )
n gt FFm-s) = 5 (n-s)
1 1
C.n = 50—(71—1) + C—(n—S) - 50—(n—4),

for n =1,2,3, ... respectively.

Next, we present the first few values of the Friedrich and Friedrich-Lucas numbers with positive and negative
subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative

subscripts
n 0o 1 2 3 4 5 6 7 8 9 10 11 12 13
F, 0 1 2 4 9 18 36 73 146 292 585 1170 2340 4681
Ia o 0 0 -L _1 _1 _»9 _9 _o _ 7 _78 _ 73 _ 585  _ 58
—n 2 1 8 16 32 64 128 256 512 1024 2048
C, 4 2 4 11 16 32 67 128 256 515 1024 2048 4099 8192
c 4 L 1 25 1 1 193 1 1 1537 1 1 12289 1
—-n 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Theorem 1.1 can be used to obtain the Binet formula of generalized Friedrich numbers. Using these (the above)
roots and the recurrence relation, Binet’s formula of generalized Friedrich numbers can be given as follows:

Theorem 2.1. (Four Distinct Roots Case: o # 3 # v # § = 1) For all integers n, Binet’s formula of generalized

18
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Friedrich numbers is

(aW3 — a(2 — a)Wa + (—a? + a + 2)W1 — 2Wo)a™

Wa = 202 + 50— 4
L (BWs = B(2 = B)Wo + (=B%+ B+2)W1 —2Wy)B"
282 + 58 —4
L OWs =92 =)We + (=7 + 7 +2)W1 — 2Wo)y"
292 +5v—4
LW = Wa = Wi — 2Wo

-3
Friedrich and Friedrich-Lucas numbers can be expressed using Binet’s formulas as follows:

Corollary 2.2. (Four Distinct Roots Case: o # 8 # v # 6 = 1) For all integers n, Binet’s formulas of Friedrich
and Friedrich-Lucas numbers are

(@®+a+2)a” | (BZ+B+2)B8" (V¥ +y+2)7"

1
Fn = 202 + ba — 4 262 +58—4 292 +5vy—4 3 (2:4)
1 1 _ “1+4/3\" 1 _ -1-4/3\" 1
— - 27L+2 o o TetveY o _ R _ =
= X 42(5—1—1\/5)( 5 > 42(5 Z\/§)< 5 > 3
and ” ”
n n n n —1+4+1iv3 —1—14v3
Co=a" 48" +9"+1=2 +(%[) +(%) +1, (2.5)
respectively.

Note that for all integers n, third-order Jacobsthal, modified third-order Jacobsthal and third-order Jacobsthal-
Lucas numbers can be expressed using Binet’s formulas as

n+1 /B'rH»l n+1

_ a v
SAC N Py oy B T ) S v Yooy (26)
K, = oa"+p"+7" (2.7)
i = (20° — o+ 2)a” N (28> - B+2)8" N (2 — v+ 21" 28)

(@=PB)a=7)  B-a)f-7) (-—)0ry—5)

respectively, see Soykan [4] for more details. So, by using Binet’s formulas of Friedrich, Friedrich-Lucas and
third-order Jacobsthal, modified third-order Jacobsthal, third-order Jacobsthal-Lucas numbers, (or by using
mathematical induction), we get the following Lemma which contains many identities:

Lemma 2.3. For all integers n, the following equalities (identities) are true:

(a)
o Joi1 = Fpy1 — Fo.
° 2-]77. - n+3_2Fn+2+Fn-
o 3F, 44 =13Jp42 + 15Jp41 + 14J, — 1.
e 3F, = nt2 + 2J, — 1.
.2Jn:_n+2+Fn+1+3Fn+1»

(b)

° 147Jn+3 = 4OCn+3 + 21Cn+2 — 70n+1 — 54C,.

19
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o 147J, = —2Ch 14 + 21Cpsa — TCry1 — 12Ch.
o Cpis = 10Jns2 + 5Jnst +6Jn + 1.

e 2C, = —Jpt2 + TJpy1 — 3Jn + 2.

o 147J, = 19Cs42 — 9Cr41 — 16C,, + 6.

e Cpy1+6C, =19J,41 —10J, + 7.

(c)
° Kn+3:Fn+3+Fn+2+4Fn+l_6Fn~
o 4K, = —3F, 3+ A4F, 5+ 16F,41 — 17F,.
o 147F,4q = 195K 042 + 181Kns1 + 202K, — 49.
o 147F, = 17Knys + 10Kt — 4K, — 49.
o 4K, = nt+2 + 13Fn+1 — 23F, — 3.
o 3(17Fn 1 — 27F,) = 14K,, — K41 + 10.
(d)
° 3Kn+3 = 4Cn+3 - Cn+2 - Cn+1 - 2011
° 3Kn = Un43 — Cn+2 - On+1 + Cn
o Cn+4 - 2Kn+2 + 3K’n+1 + 2K, + 1.
o C, =K, +1.
o K, =C, —1.
(e)
® jni3 = Fhy3+3F 2 —4F,.
o j,=—Fhi3+3F42—2F,.
L] 9Fn+4 = 11jn+2 + 1O]n + 9jn+1 — 3.
° 18Fn = jn+2 + 3jn+1 - jn — 6.
© ju=2F, 2 — Foy1 —4F, — 1.
° S(Fn+1 - 4Fn) - _an+1 + ]n + 3.
(f)

® 497,43 = T72Ch43 — 21Ch42 + 7Cpy1 — 58Ch,.
e 495, = 16Cyn4+3 — 21Ch42 + 7TCpi1 — 2C,.
o 3Ch+4 =4jn+2 + 8jn + YJn+1 + 3.
e 24C, = 11jpy2 — 21jn+1 + 195, + 24.
e 495, = —5Cy 12 + 23Cy 41 + 30C,, — 48.
e 11C,4+1 +10C, = 5jn4+1 + 187, + 21.
Next, we give the ordinary generating function i Wrz" of the sequence W, (by setting r =2,s =0,t =1,u =

n=0
—2 in Lemma 1.3).

20
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Lemma 2.4. Suppose that fw, (z) = Y., Wypz" is the ordinary generating function of the generalized Friedrich

n=0

OO
sequence {Wy}. Then, > Wyz" is given by
n=0

S _ _ 2 _ _ 3
Z W, 2" = Wo + (W1 QWO)Z =+ (Wz 21/‘;'1)2 -L— (W3 2Wo Wo)z ' (29)
oyt 1—2z—2342z

The previous lemma gives the following results as particular examples.

Corollary 2.5. Generating functions of Friedrich and Friedrich-Lucas numbers are

- z z
F2" = - , 2.1
Z i 1—2z—234224 (22842242z-1)(z—-1) (2.10)

n=0
= 4—6z—2° 4—6z—2°

Co2" = = , 2.11
7;) ? 1-2z—234224 (22342242z-1)(z—1) (2.11)

respectively.

3 Simson Formulas

Now, we present Simson’s formula of generalized Friedrich numbers (by setting r = 2,s = 0,t = 1,u = —2 in
Theorem 1.4).

Theorem 3.1 (Simson’s Formula of Generalized Friedrich Numbers). For all integers n, we have
Witz Wiopo Wapr Wy

Woto W, Wy Wi e
Wnﬁ W:1 W ani =273 % (W3 — Wo ) (Wa — Wa — Wy — 2Wo ) (W2 + TW2E + TWE +4W§ —

Wn anl Wn72 Wn73
SWoWs3 + W1iWs — TW1Wso + 2WoW3 — 2WoWo — 8WOW1).

The previous theorem gives the following results as particular examples.

Corollary 3.2. For all integers n, the Simson’s formulas of Friedrich and Friedrich-Lucas numbers are given

as
Foys Fnye Fopr B
Fn+2 Fn+1 F, Fn _ 271,71
Fn+1 Fn anl Fn72 - ’
Fn Fn—l Fn—2 Fn—3
Cn +3 Cn +2 Cn +1 Cn
Cn+2 Cn+1 Cn Cn—l n—3
= —132 2
Cn+1 Cn Cnfl Cn72 323 % ’
Cn Cn -1 Cnf 2 Cn -3
respectively.

4 Some Identities

In this section, we obtain some identities of Friedrich and Friedrich-Lucas numbers. First, we can give a few
basic relations between {Wy} and {F,}.
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Lemma 4.1. The following equalities are true:

(a) 16W, = (9Wo + 16Wa — 9W3) Fpys — 16(2Wa — W) Fyys — 16(2Wo — W1 ) Frs — (9Wo -+ 32W1 — 9Ws) Frpo.

(b) 8W, = (9Wo — Ws)Fpys — 8(2Wo — W1)Foss — 8(2Wi — Wa)Fosa — (9Wo + 16Wa — 9Ws) Fpy1.

(c) AW, = (Wo + AWy — W3)Fois — 4A(2Wi — Wa)Frsa — 4(2Wa — W) Fuyr — (9Wo — W3)F,.

(d) 2W,, = (Wo + 2Wa — Ws) Frpa — 2(2Wa — Wa)Frgr — 2(2Wo — W) F, — (Wo + AW1 — W) Fo_1.

(€) Wi =WoFup1 + (Wi — 2Wo)F, + (Wa — 2W1)Fay + (W5 — 2Wa — Wo)F_a.

Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing
Whn=aXFnis+bX Fpya+cX Foiz+dXx Frpio

and solving the system of equations

WQ = aXF5+b><F4—|—CXF3—|—d><F2
W1 = a><F6—|—b><F5—|—c><F4+d><F3
W2 = LIXF7+b><F6-|—C><F5+d><F4

W3 = aXF8+bXF7+CXF6+dXF5
we find that a = 5 (9Wo + 16W2 — 9W3),b = Ws — 2Wa,c = Wi — 2Wo,d = 15 (9Ws3 — 32W1 — 9W;). The other
equalities can be proved similarly. [J
Note that all the identities in the above Lemma can be proved by induction as well.
Next, we present a few basic relations between {W,} and {Cr}.
Lemma 4.2. The following equalities are true:
(a) 588W,, = —(139W0 + 28W51 + 112W5 — 83W3)Cn+5 + 28(4Wo + TWy — 4W3)Cn+4 + 28(8W0 — W3)0n+3 +
(195WO + 224W1 + 112W5 — 139W3)Cn+2.

(b) 294W,, = —(83Woy + 28W1 + 14Ws — 27TW3)Chrta + 14(8Wo — W3)Chrits + 14(2Wo + TW1 — 2W3)Crye +
(139W0 + 28W41 + 112W5 — 83W3)Cn+1.

(C) 147W,, = —(27WO +28W7 + 14Wo — 20W3)Cn+3 =+ 7(2W0 +7TW1 — 2W3)Cn+2 —+ 7(4W0 +TWo — 4W3)Cn+1 =+
(83W0 + 28W1 + 14Ws — 27W3)Cn.

(d) 147W,, = —(40W0 + TW1 4+ 28Ws — 26W3)Cn+2 + 7(4Wo + TWso — 4W3)Cn+1 + 7(8W0 — W3)Cn + 2(27Wo +
28W1 + 14Wo — 20W3)On_1.

(e) 147W,, = —(52Wg + 14W1 + TWo — 24W3)Cn+1 + 7(8Wo — Wg)cn =+ 7(2W0 + 7TWh — 2W3)Cn71 + 2(40W0 +
TW1 + 28Wo — 26W3)Cp—s.

Now, we give a few basic relations between {F;,} and {Cy}.

Lemma 4.3. The following equalities are true:

147F, = 20Ch45 — 14Ch44 — 28Ch43 — 27Ch 42,
147F, = 26Cp44 —28Cy43 — 7Chy2 —40Cy 11,
147F, = 24Cp43 — 7Chyo — 14Ch41 — 520,
147F, = 41Ch42 —14Ch41 — 28C,, — 48C,_1,
147F, = 68Cp41 —28C, —7Cy—1 —82C,—2,
and
16C, = Fpy5+48F 44 —96F 043 — Frqo,

8C, = 25Fn44 —48F 43 — Fny1,

4Cy, = Fu4s+ 12F,41 — 25F,,

2C, = Fpya+6F,41 —12F, — F,_1,

C, = 4F,11 —6F, — F,_o.
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5 Relations Between Special Numbers

In this section, we present identities on Friedrich, Friedrich-Lucas numbers and third-order Jacobsthal, modified
third-order Jacobsthal, third-order Jacobsthal-Lucas numbers. We know from Lemma 2.3 that
3F, = Jn+2 +2J, — 1,
¢, = K,+1.

Note also that from Lemma 4.1 and Lemma 4.2, we have the formulas of W,, as

aw, = (WO +4Wy — Wg)Fn+3 — 4(2W1 — WQ)Fn+2 — 4(2W2 — Wg)Fn.H — (9W0 — Wg)Fn,
147W,, = —(27Wo + 28W1 + 14W5 — 20W3)Cn+3 + 7(2W(} + 7TW71 — 2W3)Cn+2
+7(4Wo + TWsy — 4W3)Cn+1 + (83Wo + 28W1 + 14W5 — 27W3)Cn4

Using the above identities, we obtain relation of generalized Friedrich numbers in the following forms (in terms
of third-order Jacobsthal and modified third-order Jacobsthal numbers):

Lemma 5.1. For all integers n, we have the following identities:
(a) oW, = (—Wg +4Wo — 2W7 — Wo)]n+2 + 3(W3 —2Ws + W())JnJrl + (Wg —4Ws + 8W7 — 5W0)Jn —2W3 +
2Wo + 2W5 + 4Wy.

(b) 147W,, = (6W3 — 14Ws + 21W7 — 13W())Kn+2 + (78W3 + 35W5 — 28W1 + Wo)Kn+1 —+ (13W3 — 14W5 —
28W5 + 29W0)Kn — 49W3 + 49W5 + 49W1 + 98W.

6 On the Recurrence Properties of Generalized Friedrich Sequence
Taking r =2, =0,t = 1,u = —2 in Theorem 1.5, we obtain the following Proposition.

Proposition 6.1. For n € Z, generalized Friedrich numbers (the case r = 2,s = 0,t = 1,u = —2) have the
following identity:
2—n—1
3

From the above Proposition 6.1 (or by taking G, = F,, and H, = C, in (1.15) and (1.16) respectively), we have
the following corollary which gives the connection between the special cases of generalized Friedrich sequence
at the positive index and the negative index: for Friedrich and Friedrich-Lucas numbers: take W,, = F,, with
Fo=0,F1 =1,F, =2, F3 =4 and take W,, = C,, with Cyp =4,C1 = 2,05 = 4,C3 = 11, respectively. Note that
in this case H, = C,,.

W, = (—6Wap, 4+ 6C, Wayn — 3C2W, + 3Ca2n Wa 4+ WoCh 4 2WoCay — 3WoCnClan).

Corollary 6.2. For n € Z, we have the following recurrence relations:

(a) Friedrich sequence:

2—71—1
n = =5 (6P + 6Cn Fan — 3C2Fp + 3C2, F).
(b) PFriedrich-Lucas sequence:
27’”71
Cfn = (073;. + ZCBTL - 302ncn) .

3

We can also present the formulas of F_,, and C_,, in the following forms.

Corollary 6.3. Forn € Z, we have the following recurrence relations:

2—n—5

(a) F,, = (—96F%3,, + 24(Fris + 12F 41 — 25F,) Fap — 3(Fnys + 12F, 11 — 25F,)2Fy, + 12(Fangs +
12Fon41 — 25F0n) Fy).

23



Soykan; J. Adv. Math. Com. Sci., vol. 38, no. 3, pp. 12-31, 2023; Article no.JAMCS.96122

(b)

(c)
(d)

(e)

(a)
(b)

(c)
(d)
(e)

7

3F_, = 2%(&]3 +6J2 5+ (Jngo — TInt1 + 2Jn_2)Jn — 14Jp_1Jn_2 + 2Jopn + 4Jon_q — 27).

1
147F_, = 2—”(—21(2 +10K2_; 4+ 34K2_5 4+ 2Ks, — 10K2,_2 — 34Ka, 4 — 49 x 2™).
220, = —9J2 44272 —12J2 90— (3Jna2—21Tpns1 +98T 01 +4Tn2) Jn+14(Jnt14+2Tn—2) Jn_1 —6Jan+
28J2n—2 — 8Jop_g4 4+ 2712,
1

C.n= W(

K} — Ko, +2™1).

Proof. We use the identities, see Soykan [17],

1

Jon = Gur (3042020 + Jnsadn = Tnsrn),
1 2

Ko = 5oy (K= Ko,

By using the identity 4C), = Fp4+3 + 12F,+1 — 25F,, and Corollary 6.2, (or by using Corollary 1.6 (a)), we
obtain (a).

Since
3Fn = n+2+2=]n 717
and 1
Jon = W(?,JE +2J2n + Jns2dn — TIny1dn),
we get (b)

Since 147F, = 17TKp42 + 10K, 41 — 4K,, —49 and K_,, = ﬁ([(ﬁ — Ks,), we obtain (c).
Since 2Cn = —Jnt2 + TIny1 — 3Jn +2 and J_, = 5357 (3J5 + 2Jon + Jny2n — TIni1Jn),, we get (d).
Since C,, = K, +1 and K_,, = 2n%(Kfl — Ka,), we obtain (e). O

Sum Formulas

The following Corollary gives sum formulas of third-order Jacobsthal numbers.

Corollary 7.1. [4] For n > 0, third-order Jacobsthal numbers have the following properties:

(a)
(b)
(c)

Yhcodk = 5 (Jnss — Jng1 — 1).
>oneo ok = %(Jzn-u +2J2, — 1).
Srco Jakt1 = 5 (Janta + 2J2n41).

The following Corollary presents sum formulas of Friedrich and Friedrich-Lucas numbers.

Corollary 7.2. For n > 0, Friedrich and Friedrich-Lucas numbers have the following properties (in terms of
third-order Jacobsthal numbers):

(a)

(b)

(1) ZZ:O Fr = %(2Jn+2 + Jn+1 +2J, —n— 3).
(i) Y o For = 2 (Jant2 + Jont1 4+ 2J2n —n — 2).
(iii) >y o Fory1 = %(2J2n+2 + 3J2ng1 + 2J2n —n — 2).
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(3 Y roCre =301+ Jn+n+1
(i) Yop_,Cok = %(2J2n+2 + 5Jont+1 — 4Jan + 30+ 5).
(iii) Yop_o Cors1 = 3(TJant2 — 2J2nt1 + 4J2n + 30+ 1).

Proof. The proof follows from Corollary 7.1 and the identities

3F,
2C,

Jn+2 + 2Jn - 1,
—Jnt2 + TJns1 — 3Jn + 2. (]

8 Matrices and Identities Related With Generalized Friedrich
Numbers

If we define the square matrix A of order 4 as

2 0 1 -2
1 0 0 O
A= 01 0 o0 (8.1)
0 0 1 O
and also define
Fn+1 Fn—l 72Fn—2 Fn72Fn—l 72Fn
Fn Fn72 - 2Fn73 anl - 2Fn72 _2Fn71
B, = 8.2
F -1 Fn—S - 2Fn—4 Fn—2 - 2Fn—3 _2Fn—2 ( )
Fn72 Fn74 - 2Fn75 Fn73 - 2Fn74 72Fn73
and
Wn+1 Wn—l - 2Wn—2 Wn - 2Wn—1 72Wn
U, — Wn Wn72 - 2Wn73 anl - QWTL72 _Qanl (8 3)
" Wn—l Wn—S - 2Wn—4 Wn—2 - 2Wn—3 _QWn—2 ’
Wn—2 Wn—4 - 2Wn—5 Wn—3 - 2Wn—4 72Wn—3
then we get the following Theorem (by setting r = 2,s = 0,¢ = 1,u = —2 in Theorem 1.7).
Theorem 8.1. For all integers m,n, we have
(a) B, =A", i.e.,
2 0 1 —-2\" Fpy1 Fao1—2F,_o F,—2F,_ —2F,
1 0 0 O . F, Fon_o—2F, 3 F,_1—2F, o —2F,_1 (8.4)
01 0 O o Fo1 Fn_3s—2F,_4 Fn_o—2F, 3 —2F, o ’ ’
0O 01 o0 Fn_o Fn_4—2F, 5 F, 3—2F, 4 —-2F,_3

(b) U1A™ = A™U,.
(€) Unim = UpBm = BnUn.

Using the above last Theorem and the identity
3Fn = n+2+2Jn - 1,

we obtain the following identity for third-order Jacobsthal numbers.
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Corollary 8.2. For all integers n, we have the following formula for third-order Jacobsthal numbers:

n

2 0 1 =2 ail a2 a1z a4
An = 1 0 0 O _ 1| a1 a2 as ax
01 0 O 3 asi  as2 G333 A34
0 0 1 O a41 Q42 Q43 Q44

where
a1l = Jpy3 +2Jpp1 — 1
a21 = Jpy2 +2J, — 1
a31 = Jny1 +2Jp1 -1
ag1 = Jp +2Jp—2—1
a12 = Jpny1 —2Jp +2Jp_1 —4Jn_2+1
aso = Jp —2Jn_1+2Jpn_o —4J_3+1
ass = Jp—1 —2Jp—2+2Jp—3 —4Jp_a+1
42 = Jpn—2 —2Jp_3+2Jp_q4 —4Jn_5+1
a13 = Jny2 — 2Jp41 +2Jp —4dn-1 + 1
a23 = Jny1 — 2Jn + 201 —4Jdp_2+1
as3 = Jp —2Jp—1+2Jp—o—4Jp—3+1
43 = Jpn-1 —2Jp_2+2Jp_3 —4Jn_a+1
a4 = —Q(Jn+2 +2J, — 1)
aza = —2(Jng1 + 2Jn-1 — 1)
azqs = 72(Jn +2Jp—o — 1)
44 = —Q(Jnfl +2Jp_3 — 1)

Next, we present an identity for Wy4m, (by setting r = 2,5 = 0,¢{ = 1,u = —2 in Theorem 1.8).
Theorem 8.3. For all integers m,n, we have

Witm = WnFpg1 + Woo1(Fe1 — 2Fm—2) + Wi_o(Frm — 2F—1) — 2Wh_3Fnm, (8.5)
As particular cases of the above theorem, we give identities for F, 1y, and Cr4m.

Corollary 8.4. For all integers m,n, we have

Fn+m = FnFm+l +Fn71(mel _2Fm72)+Fn72(Fm_2Fm71)_2Fn73FM7 (86)
Cn+m = CnF'm+l + Cnfl(mel - 2Fm72) + C’n72(F’m - 2}7777,71) - 2Cn73Fm4 (87)

9 Conclusions

Sequences have been fascinating topic for mathematicians for centuries. The Fibonacci and Lucas sequences
are very well-known examples of second order recurrence sequences. For rich applications of these second order
sequences in science and nature, one can see the citations in [18]. The generalization of Fibonacci sequence leads
to several nice and interesting sequences.

As a fourth order sequence, we introduce the generalized Friedrich sequence (and it’s two special cases, namely,
Friedrich and Friedrich-Lucas sequences) and we present Binet’s formulas, generating functions, Simson formulas,
the sum formulas, some identities, recurrence properties and matrices for these sequences.

We have shown that there are close relations between Friedrich, Friedrich-Lucas numbers (which are fourth order
linear recurences) and special third order linear recurences (numbers), namely third order Jacobsthal, modified
third-order Jacobsthal, third order Jacobsthal-Lucas numbers.
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Linear recurrence relations (sequences) have many applications. Next, we list applications of sequences which
are linear recurrence relations.

First, we present some applications of second order sequences.

For the applications of Gaussian Fibonacci and Gaussian Lucas numbers to Pauli Fibonacci and Pauli
Lucas quaternions, see [19].

For the application of Pell Numbers to the solutions of three-dimensional difference equation systems, see
[20].

For the application of Jacobsthal numbers to special matrices, see [21].
For the application of generalized k-order Fibonacci numbers to hybrid quaternions, see [22].
For the applications of Fibonacci and Lucas numbers to Split Complex Bi-Periodic numbers, see [23].

For the applications of generalized bivariate Fibonacci and Lucas polynomials to matrix polynomials, see
[24].

For the applications of generalized Fibonacci numbers to binomial sums, see [25].
For the application of generalized Jacobsthal numbers to hyperbolic numbers, see [26].
For the application of generalized Fibonacci numbers to dual hyperbolic numbers, see [27].

For the application of Laplace transform and various matrix operations to the characteristic polynomial
of the Fibonacci numbers, see [28].

For the application of Generalized Fibonacci Matrices to Cryptography, see [29].

For the application of higher order Jacobsthal numbers to quaternions, see [30].

For the application of Fibonacci and Lucas Identities to Toeplitz-Hessenberg matrices, see [31].
For the applications of Fibonacci numbers to lacunary statistical convergence, see [32].

For the applications of Fibonacci numbers to lacunary statistical convergence in intuitionistic fuzzy
normed linear spaces, see [33].

For the applications of Fibonacci numbers to ideal convergence on intuitionistic fuzzy normed linear
spaces, see [34].

We now present some applications of third order sequences.

For the applications of third order Jacobsthal numbers and Tribonacci numbers to quaternions, see [35]
and [36], respectively.

For the application of Tribonacci numbers to special matrices, see [37].

For the applications of Padovan numbers and Tribonacci numbers to coding theory, see [38] and [39],
respectively.

For the application of Pell-Padovan numbers to groups, see [40].

For the application of adjusted Jacobsthal-Padovan numbers to the exact solutions of some difference
equations, see [41].

For the application of Gaussian Tribonacci numbers to various graphs, see [42].

For the application of third-order Jacobsthal numbers to hyperbolic numbers, see [43].

For the application of Narayan numbers to finite groups see [44].

For the application of generalized third-order Jacobsthal sequence to binomial transform, see [45].
For the application of generalized Generalized Padovan numbers to Binomial Transform, see [46].
For the application of generalized Tribonacci numbers to Gaussian numbers, see [47].

For the application of generalized Tribonacci numbers to Sedenions, see [48].
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e For the application of Tribonacci and Tribonacci-Lucas numbers to matrices, see [49].

e For the application of generalized Tribonacci numbers to circulant matrix, see [50].

e For the application of Tribonacci and Tribonacci-Lucas numbers to hybrinomials, see [51].
Next, we now list some applications of fourth order sequences.

e For the application of Tetranacci and Tetranacci-Lucas numbers to quaternions, see [52].

e For the application of generalized Tetranacci numbers to Gaussian numbers, see [53].

e For the application of Tetranacci and Tetranacci-Lucas numbers to matrices, see [54].

e For the application of generalized Tetranacci numbers to binomial transform, see [55].
We now present some applications of fifth order sequences.

e For the application of Pentanacci numbers to matrices, see [56].

e For the application of generalized Pentanacci numbers to quaternions, see [57].

e For the application of generalized Pentanacci numbers to binomial transform, see [58].
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