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Abstract

In this article, we study the asymptotic dynamics of a stochastic strongly damped plate system with
homogeneous Neumann boundary conditions and multiplicative noise. First, we investigate the existence and
uniqueness of solutions in infinite-dimensional dynamical systems using the notion of mild solutions, and then
we examine the presence of a bounded absorbing set. Finally, we investigate the asymptotic compactness by
using the decomposition technique to prove the existence of a random attractor.

Keywords: Plate equations; random attractors; strongly damped; dynamical systems.
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1 Introduction

Consider the stochastic strongly damped plate equation with multiplicative noise in a bounded, open set Ω of
Rn(n = 5) with smooth boundary ∂Ω:

utt + α∆2ut + ∆2u+ εu+ g(u) = f(x) + cu ◦ dW (x, t)

dt
, x ∈ Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, t ≤ 0,

u|∂Ω =
∂u

∂n
|∂Ω = 0, t ≥ 0,

(1.1)

where ε, α and c are positive constants, 4 represents the Laplacian with respect to x ∈ R5, u = u(x, t) is a real
function in Ω × [0,+∞), where u0 ∈ H2

0 (Ω), u1 ∈ L2(Ω), f(x) ∈ H1
0 (Ω) ∩H2(Ω) are represents given external

forces. W (x, t) is an independent two-sided real-valued Wiener process on the probability space (Ω,F ,P),where

Ω = {ω = (ω1, ω2, ....., ωm) ∈ C(R,Rm) : ω(0) = 0},

is endowed with the compact open topology and P is its corresponding Wiener measure. F is the completion of
the Borel σ-algebra with respect to P− on Ω. We identify W (t) with (W1(t), W2(t), ....., Wm(t)), i.e.,

W (t) = (W1(t), W2(t), ....., Wm(t)), t ∈ R.

Define a time shift. (θt)t∈R on Ω by

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω.

The nonlinear term g is a C1− function with g(0) = 0 and satisfies the following conditions:

(h1) There exists constants 0 ≤ p ≤ 4, n ≥ 5, and a positive constant C1 such that

|g′(u)| ≤ C1(1 + |u|p) ,∀ u ∈ R, (1.2)

and
(h2) There exists positive constants

lim inf
|u|→∞

g(u)

u
≥ 0 , ∀ u ∈ R,

lim inf
|u|→∞

g(u)u− µiG(u)

u2
≥ 0, ∀ u ∈ R

(1.3)

(h3) There exists constants k > 0 and µ1 such that for allµ ∈ (0, µ1), there is a value of µi ∈ R that satisfies.{
kG(u)− µu2 + cµ ≤ ug(u), ∀ u ∈ R

G(u) ≥ µ‖u‖P+2 + cµ‖u‖2, ∀ u ∈ R
(1.4)
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where G(s) =
∫ s

0
g(r)dr.

The study of asymptotic behavior of dynamical systems is a crucial issue in mathematical physics, with notable
progress made in recent years. In deterministic systems, the global attractor, a compact set that is invariant
and attracts nearby points, is central to understanding dynamics (as seen in Temam [1]. This paper focuses on
the random attractors of equation (1.1) when the forcing term is time-independent. To study the equation’s
dynamics, two parametric spaces are introduced: one for deterministic forcing and the other for stochastic
perturbations. The existence and upper semi-continuity of the global attractor and pullback attractor (or kernel
sections) for deterministic autonomous and non-autonomous systems have been widely studied in relation to
this problem(as seen in references [2, 3, 4]).

Several authors have introduced a distinct notion of attractors for stochastic partial differential equations,
including H. Crauel [5, 6], Morimoto [7], L. Arnold [8, 9], J. Duan, K. Lu and B. Schmalfuß [10], J. Hale,
X. Lin and G. Raugel [4], T. Caraballo, and J. Langa [11, 12]. They have studied the existence and upper
semi-continuity of attractors for deterministic and random dynamical systems, respectively. They established
general criteria for the existence and upper semi-continuity of attractors in non-autonomous stochastic evolution
equations with time-dependent external terms and multiplicative noise. Wang[13] developed a useful theory on
the existence and upper semi-continuity of random attractors by introducing two parametric spaces and applying
it to non-autonomous stochastic reaction-diffusion equations and wave equations. For further information (see
[14, 15]).

In recent years, numerous advancements have been made in the study of systems related to equation (1.1). The
dynamics of deterministic hyperbolic equations have been explored and shown to have global attractors, which are
finite-dimensional objects despite being subsets of an infinite-dimensional phase space. Some examples include
the existence of global attractors for linear damped plate equations with critical exponent (A. Khanmamedov[16],
G. Yue and C. Zhong [17]), nonlinear damped plate equations [18, 19], strongly damped plate equations with
white noise (Ma et al.[20]), and strongly damped wave equations ([21, 22, 23, 24, 25]). Further references for
this area of study can be found (see[26, 27, 28, 29, 30]). In [31], the analysis of fractional-order proportional
delay physical models was studied via a novel transform. Bhadane P. et al. in [32] investigated the approximate
solution of the fractional Black-Scholes European option pricing equation by using ETHPM. Hamoud A. [33, 34]
provides recent advances on reliable methods for solving Volterra-Fredholm integral and integro-differential
equations, and discusses some powerful techniques for solving nonlinear Volterra-Fredholm integral equations.

Recently, researchers have discovered the presence of random attractors for various equations, as indicated in
references([35, 36, 37, 38, 39]). However, there is a lack of research on random attractors for equation (1.1).
This article aims to study the existence of random attractors for the system (1.1) - (1.2). Proving compactness
of the generated random dynamical system is challenging, but its asymptotic compactness can be established
by using the solution decomposition method, as shown in references(see[28, 40, 41]).

The paper is structured as follows. Section 2 reviews basic concepts and properties of general random dynamical
systems. Section 3 establishes the framework for (1.1) by providing the basic settings, demonstrating that
it generates a random dynamical system in an appropriate function space, and establishing the existence and
uniqueness of solutions. In Section 4, uniform energy estimates for the solutions of (1.1) defined on R5 are derived
with the aim of proving the existence of a bounded random absorbing set and the asymptotic compactness of
the associated random dynamical system as t → ∞. In section 5, we discuss the decomposition of solutions in
order to obtain the asymptotic compactness. Then, existence of a random attractor is proven in the Section 6.
Finally, we give the conclusion.

2 Random Dynamical Systems

This section serves to refresh our understanding of basic concepts related to RDS and random attractors (further
details can be found in [5, 6]) in order to obtain our main results, it’s crucial to recall some definitions and
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properties concerning the asymptotic behavior of random dynamical system defined by (1.1). We consider
(X, ‖ · ‖X) to be a separable Hilbert space with Borel σ−algebra B(X) and (Ω,F ,P, (θt)t∈R) to be a metric
dynamical system.

Definition 2.1. [5] Consider a metric dynamical system (Ω,F ,P, (θt)t∈R). The mapping φ : R+ ×Ω×X → X
is defined as a RDS if it is measurable with respect to the sigma algebra (B(R+)×F×B(X),B(X))− and satisfies
the following properties:
(i) φ(0, ω)x = x;
(ii) φ(s, θtω) ◦ φ(t, ω)x = φ(s+ t, ω)x;
for all s, t ∈ R+, x ∈ X and ω ∈ Ω.
If, in addition, φ is continuous with respect to t ≤ 0 and ω ∈ Ω,it is referred to as a continuous RDS.

Definition 2.2. [6] A mapping Φ(t, τ , ω, x) : R+ × R × Ω ×X → X is referred to as a continuous cocycle on
X over R and (Ω,F , P, (θt)t∈R),if it satisfies the following conditions for all τ ∈ R , ω ∈ Ω and t, s ∈ R+:
i) Φ(t, τ, ω, x) : R+×R×Ω×X → X is a (B(R+)×F ,B(R)) is a measurable mapping with respect to the sigma
algebra,
ii) Φ(0, τ, ω, x) is the identity function on X,
iii) Φ(t+ s, τ, ω, x) = Φ(t, τ + s, θsω, x) ◦ Φ(s, τ, ω, x),
iv) Φ(t, τ, ω, x) : X → X is continuous.

Definition 2.3. [42] A set-valued mapping B : Ω → 2X is referred to as a random closed set if for all B(ω)
is a closed set,non-empty, and The functionω 7→ d(x,B(ω)) is measurable for all x ∈ X, ω ∈ Ω. A random set
B := {B(ω)}ω∈Ω is referred to as tempered if.

lim
t→∞

e−ηtd(B(θ−tω)) = 0,

for a.e. ω ∈ Ω and all η > 0, where d(B) := supx,y∈B d(x, y).

Definition 2.4. [43] Let D be a collection of random subset of X and K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,
then K is called an absorbing set of Φ ∈ D, This means that for any τ ∈ R, ω ∈ Ω and B ∈ D, there exists a
T = T (τ, ω,B) > 0 such that for all B ∈ D, the following holds:

Φ(t , τ, θ−tω,B(τ, θ−tω)) ⊆ K(τ, ω) , ∀ t ≥ T.

Definition 2.5. [44] Let D be the collection of all tempered random sets in X, and a random set A :=
A{(ω)}ω∈Ω ∈ X is called a random attractor for the RDS φ if P-a.s.
(i) A is a random compact set, i.e. A(ω) is nonempty and compact for a.e. ω ∈ Ω and ω 7→ d(x,A(ω)) is
measurable for every x ∈ X;
(ii) A is φ−invariant, i.e. φ(t, ω,A(ω)) = A(θtω), for all t ≥ 0 and a.e. ω ∈ Ω;
(iii) A attracts every set in X, i.e. for all bounded (and non-random) B ⊂ X,

lim
t→∞

dist(φ(t, θ−tω,B(θ−tω)), A(ω)) = 0, a.e. ω ∈ Ω.

Lemma 2.1. [6] Suppose there exists a random compact set {K(ω)}ω∈Ω that can absorb all bounded, non-random
sets B ∈ D, for the continuous random dynamical system on E over (Ω,F ,P, (θt)t∈R). Then, the set

A = {A(ω)}ω∈Ω = ∪B⊂XΛB(ω),

is a global attractors for φ, where the union is taken over all bounded B ⊂ X, and ΛB(ω) is the ω− limits set
of B, defined as:

ΛB(ω) =
⋂
τ≥0

⋃
t≥τ

(φ(t, θ−tω,B(θ−tω)), A(ω)), ω ∈ Ω.
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3 Existence and Uniqueness of Solutions

In this section, we explore the existence and uniqueness of solutions to system (1.1) in a bounded subset
of Ω ⊂ Rn, (n = 5). We make the following assumptions: (i) − (iii) are satisfied, the space E and the
probability space (Ω,F ,P, (θt)t∈R) are defined as in Section 1. Further, let the set A = ∆2 is defined as
the collection of all functions satisfies Neumann boundary condition on Ω. Then, domain of A is defined as
D(A) = {u ∈ H4(Ω) ∩ H2

0 (Ω) : ∂u
∂n
|∂Ω = 0}. Clearly, A is a self-adjoint and positive linear operator with

eigenvalues {λi}i∈N:

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · ·, λi → +∞ (i→ +∞).

Let E = H2
0 (Ω)× L2(Ω), which is a separable Hilbert space endowed with the usual norm

‖Y ‖H2
0×L2 = (‖∆u‖2 + ‖v‖2)

1
2 for Y = (u, v)>, (3.1)

where ‖ · ‖ denotes the usual norm in L2(Ω) and > stands for the transposition. it could be defined the powers
Ar of A for r ∈ R. The space V2r = D(Ar) is the Hilbert space with the standard inner product and norm,
respectively

((·, ·))D(Ar) = (Ar·, Ar·), ‖ · ‖D(Ar) = ‖Ar · ‖, ((u, u)) =

∫
Ω

∆u∆vdx, ‖∆u‖ = ((u, u))
1
2 .

Let ∀u, v ∈ H2
0 (Ω). Especially, (u, v) and ‖ · ‖ denote the L2(Ω) inner product and norm respectively,

(u, u) =
∫

Ω
uvdx, ‖u‖ = (u, u)

1
2 ∀u, v ∈ L2(Ω). Therefore, the injection from D(Ar) ↪→ D(As) is compact if

r > s. This leads to the satisfaction of the generalized Poincaré inequality

‖u‖2r ≥ λ0‖u‖2s Where λ0 > 0 is the first eigenvalue of A.

The goal is to turn problem (1.1) into a deterministic system with random parameters and no noise terms and
demonstrate that it creates a random dynamical system. This is accomplished by using the Ornstein-Uhlenbeck
process derived from Brownian motion, which follows Itô differential equation

dz + αzdt = dW (t), (3.2)

therefore, the solution is given as follows:

θtω(s) = ω(t+ s)− ω(t),

z(θtω) = −α
∫ 0

∞
es(θtω)(s)ds, s, t ∈ R, ω ∈ Ω.

(3.3)

It has been established in [9, 28, 45] that the random variable |z(ω)| is tempered, and there exists a set Ω̄ ⊆ Ω,
which is θt -invariant and has full measure according to P, such that for all ω ∈ Ω̄, the mapping t 7→ z(θtω) is
continuous with respect to t

lim
t→∞

e−αt|z(θ−tω)| = 0, ∀ α > 0, ω ∈ Ω̄. (3.4)

Equation (3.3) has a random fixed point in the context of random dynamical systems, resulting in a stationary
solution called the stationary Ornstein-Uhlenbeck process (refer to [5, 6, 28, 35] for further information). For
ease of use, in the following, it is denoted as Ω instead of Ω̄.

Lemma 3.1. (Refer to [29, 40, 45]) The Ornstein-Uhlenbeck process in equation 3.3, denoted as z(θtω) , is
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rewritten as: 

lim
t→±∞

|z(θtω)|
|t| = 0,

lim
t→±∞

1

t

∫ 0

−t
z(θsω)ds = E[z(θsω)] = 0,

lim
t→±∞

1

t

∫ 0

−t
z(θsω)ds = E[z(θsω)] =

1√
πδ
,

lim
t→±∞

1

t

∫ 0

−t
|z(θsω)|2ds = E[|z(θsω)|2] =

1

2δ
,

(3.5)

by (3.5), there exists T1(ω) > 0 such that for all t ≥ T1(ω),∫ 0

−t
z(θsω)ds <

2√
πδ
t,

∫ 0

−t
|z(θsω)|2ds < 1

2δ
t. (3.6)

To make equation (1.1) easier to evaluate, it is useful to convert it into a first-order equation in time.v =
ut + εu− cuz(θtω). This can be achieved by defining

du

dt
= v − εu+ cuz(θtω),

dv

dt
= (ε− αA)v − (ε− αA+A+ µ)u− g(u),

− (v − 2εu+ cuz(θtω) + (A− 1)αu)z(θtω) + f(x),

u(x, 0) = u0(x), v(x, 0) = v0(x) = u1(x) + εu0(x)− cu0(x)z(θtω),

(3.7)

Let

Y =

(
u
v

)
, L =

(
εI − I

εI − αA+A+ µ − εI + αA

)
,

and

Q(t, ω, Y ) =

(
cuz(θtω)

−g(u)− (v − 2εu+ cuz(θtω) + (A− 1)αu)z(θtω) + f(x)

)
,

Then, equation (3.7) has the simple matrix form

Y ′ + LY = Q(t, ω, Y ) (3.8)

it is defined

ψ1 = u, ψ2 =
du

dt
+ εu− cuz(θtω), (3.9)

given a positive constant ε, equation (3.7), can be expressed as an equivalent system with random coefficients in
E as follows: 

dψ1

dt
= ψ2 − εψ1 + cψ1z(θtω),

dψ2

dt
= (ε− αA)ψ2 − (ε− αA+A+ µ)ψ1 − g(ψ1),

− (ψ2 − 2εψ1 + cψ1z(θtω) + (A− 1)αψ1)z(θtω) + f(x),

ψ1(x, 0) = u0(x), ψ2(x, 0) = v0(x) = u1(x) + εu0(x)− cu0(x)z(θtω),

(3.10)

equation (3.10), the random differential equation, can be expressed in vector form as follows:{
ψ′+ Lψ = Q(ψ, t, ω),

ψ0 = (ψ1(x, 0), ψ2(x, 0)) = (u0(x), u1(x) + εu0(x)− cu0(x)z(θtω))>,
(3.11)
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whereas

ψ =

(
ψ1

ψ2

)
, L =

(
εI − I

εI − αA+A+ µ − εI + αA

)
,

and

Q(ψ, t, ω) =

(
cψ1z(θtω)

−g(ψ1)− (ψ2 − 2εψ1 + cψ1z(θtω) + (A− 1)αψ1)z(θtω) + f(x)

)
.

In accordance with references [1, 42, 46], it is established that the operator L in equation(3.11) is the infinitesimal
generator of C0-semigroup eLt, of contractions on E for t > 0, and also generates a C0-semigroup e−Lt of
contractions on E. Due to assumptions (h2) and the embedding relation H2

0 (Ω) ↪→ L10(Ω), it can be verified
that Q(ψ, t, ω) : E → E is locally Lipschitz continuous with respect to ϕ for each ω ∈ Ω, using the classical
semigroup theory for (local) existence and uniqueness solution of evolution differential equation [46]. This leads
to the following theorem.

Theorem 3.2. Assume that h1 − h3 hold, for each ω ∈ Ω and for any ψ0 ∈ E, there exists T > 0 such that
(3.11) has a unique mild function ψ(·, ω, ψ0) ∈ C([0,+∞);E) such that ψ(0, ω, ψ0) = ψ(0) satisfies the integral
equation

ψ(t, ω, ψ0) = e−Ltψ0(ω) +

∫ t

0

eL(t−s)Q(ψ(s, ω, ψ0), θsω, s)ds. (3.12)

However, ψ(t, ω, ψ0) is jointly continuous in (ψ0) and measurable in ω.
According to Theorem 3.1, it is known that for P-a.s. each ω ∈ Ω, , the following results hold for all T > 0

(i)- if ψ0(ω) ∈ E then, ψ(·, ω, ψ0) ∈ C([0,+∞;E),
(ii)- ψ(t, ω, ψ0) is jointly continuous into t and measurable in ψ0(ω),
(iii)- the solution mapping of equation(3.11) possesses the properties of a Random Dynamical System.

The solution ψ(·, ω, ψ0) of equation(3.11) defines a continuous random dynamical system over R and (Ω,F , P, (θt)t∈R),
and this solution mapping has been noticed to be unique.

Φ̄(t, ω) : R× Ω× E 7→ E, t ≥ 0,

ψ(0, ω) = (u0(ω), v0(ω), )> 7→ (u(t, ω), v(t, ω), )> = ψ(t, ω),
(3.13)

generates a random dynamical system and, in addition,

Φ(t, ω) : Y0 = ψ(0, ω) + (0, cuz(θ0ω))> 7→ Y (t, ω, Y0) = ψ(t, ω, ψ0) + (0, cuz(θtω))>, (3.14)

where Y0 = (u0, u1)> and ψ0 = (u0, u1 + cuz(θtω))>, Φ(t, ω) is a continuous random dynamical system
associated with the problem (3.8) on E. Φ(t, ω) has a relationship with Φ̄(t, ω)

Φ̄(t, ω) = R(θtω)Φ(t, ω)R−1(θtω) (3.15)

The transformation R(θtω) : (a, b)> 7→ (a, b− cuz(θtω)> is a homeomorphism of E, and it is also defined

ϕ1 = u = ψ1, ϕ2 = ut + εu, (3.16)

similar to equation(3.11), it was obtained that.{
ϕ′ +H(ϕ) = Qε(ϕ, t, ω)

ϕ0(x, 0) = (u0, v0)> = (u0(x), u1(x) + εu0(x))>,
(3.17)

whereas

ϕ =

(
u
v

)
, H(ϕ) =

(
v − εu

(ε− αA+A+ µ)u− (ε− αA)v

)
,

and

Qε(ϕ, ω, t) =

(
0

cuz(θtω)− g(u) + f(x)

)
.
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An isomorphism Tεϕ = (ϕ1, ϕ2 − εϕ1)>, ϕ = (ϕ1, ϕ2)> ∈ E, was introduced. It has an inverse isomorphism
T−εϕ = (ϕ1, ϕ2 + εϕ1)>, and it follows that (θ, ϕ) maps.

Φ̄ε(t, ω) = TεΦ̄(t, ω)T−ε : ϕ0 7→ ϕ(t, ω, ϕ0) (3.18)

A random dynamical system associated with (3.16) is defined, where ϕ0 = (u0, u1 + εu0 − cu0z(θ0ω))> and Tε :
(a, b)> 7→ (a, b + εa)> is an isomorphism of E. It should be noted that all the random dynamical systems
Φ(t, ω), Φ̄(t, ω), Φ̄ε(t, ω) are equivalent. This article will study the existence of random attractor for RDS Φ
based on this theorem.

4 Uniform Estimates of Solutions

This section will demonstrate the existence of a random absorbing set for the RDS ϕ (t, ω, ϕ0(ω)) , t ≥ 0 in the
space E, and provide uniform estimaties on the solutions of (3.11) defined on Rn (n=5). For this purpose, a new

Hilbert space E will be introduced. It is defined as (ϕ, ϕ̃)E = γ(A
1
2 u1, A

1
2 u2) + (v1v2) and ‖ϕ‖E = (ϕ,ϕ)

1
2
E for

any ϕ = (u1, v1)>, ϕ̃ = (u2, v2)> ∈ E, where γ is chosen

γ =
4 + αλ1 + β1

4 + 2(αλ1 + β1)α+ β2
2/λ1

, (4.1)

It is clear that the norm ‖ · ‖E is equivalent to the usual norm ‖ · ‖H2
0×L2 of E.

Lemma 4.1. For any ϕ = (u, v)T ∈ E, it follows that

(H(ϕ), ϕ)E ≥
ε

2
‖ϕ‖2E +

ε

4
‖u‖22 +

α

2
‖v‖2.

Proof. Let ϕ(t) = (u(t), v(t))T and H(ϕ) ∈ E, it is obtained

(H(ϕ), ϕ)E =‖ϕ‖2E − ε‖u‖22 + (α− ε)‖v‖2 − ε(α− ε)(u, v)

≥ε‖u‖22 + (α− ε)‖v‖2 − ε(α− ε)(u, v)

=
ε

2
‖ϕ‖2E + ε‖u‖22 +

α

2
‖v‖2.

�

Lemma 4.2. Under the assumptions (h1)− (h3), there exists a random variable r1(ω) > 0 and a bounded ball
B0(t, ω) ⊂ E, centered at 0 with random radius r0(ω) > 0, BE(0, r0(ω) ∈ D(E), For any bounded non-random
set B ⊂ D(E), there exists a deterministic time T = T (t, ω,B) ≥ 0, such that the solution ϕ(t, ω;ϕ(ω)) of
equation(3.17) with initial value (u0, u1 + εu0, η0)T ∈ B satisfies, for almost all with respect to P − a.s. ω ∈ Ω,

‖ϕ(t, ω;ϕ(0, ω))‖E ≤ r2
0(ω), t ≥ T (B).

Proof. For any ω ∈ Ω, t ≥ 0, let ϕ(t) = (u(t), v(t)) ∈ E be a mild solution of (3.17). By taking the inner
product (·, ·)E of (3.17) with ϕ(t) = (u, v) = (u, ut + εu− cuz(θtω))>, it is obtained that

1

2

d

dt
‖ϕ‖2E + (H(ϕ,ϕ))E = (Q(ϕ, ω, t), ϕ), (4.2)

As a result of Lemma 4.1,

(H(ϕ,ϕ))E =
ε

2
‖ϕ‖2 + ε‖u‖22 +

α

2
‖v‖2, (4.3)
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let us evaluate the right side of equation (4.2)

(Q(ϕ, ω, t), ϕ) = ((cuz(θtω), u)) + (cu(ε− αA)z(θtω), w) + (c2uz2(θtω), w)

+(cvz(θtω), w)− (g(u), w) + (f(x), w) (4.4)

By using the Cauchy-Schwartz inequality, it can be determined that

((cuz(θtω), u)) ≤ |c||z(θtω)|‖u‖22, (4.5)

ε(cuz(θtω), w) ≤ ε|c||z(θtω)|‖u‖‖w‖ ≤ ε|c||z(θtω)|
2
√
λ0

(‖u‖22 + ‖w‖2), (4.6)

(c2uz2(θtω), w) ≤ |c|2|z(θtω)|2‖u‖‖w‖ ≤ c2

2
√
λ0

|z(θtω)|2(‖u‖22 + ‖w‖2), (4.7)

(cwz(θtω), w) ≤ |c||z(θtω)|‖w‖2, (4.8)

(f(x), w) ≤ 2

α
‖f(x)‖2 +

α

8
‖w‖2, (4.9)

α(c∆uz(θtω),∆w) ≤ α|c||z(θtω)|‖u‖‖w‖ ≤ α
√
λ0|c||z(θtω)|

2
(‖u‖22 + ‖w‖2), (4.10)

By using (h2), (h3) and the and the Hölder inequality, the nonlinear term in (4.4) can be estimated as follows:

(g(u), w) = (g(u), ut + εu− cuz(θtω))
= d

dt

∫
U
G(u)dx+ ε (g(u), u)− cuz(θtω)(g(u), u) .

(4.11)

As a result of (3.3), (h1), and (h2), and thepoincarè inequality, there exists positive constants µ1, µ2

(g(u), u)− kG̃(u) + µ1‖u‖22 + µ2 ≥ 0, (4.12)

It is deduced from (1.4) that, for each given instance µ3, µ4 > 0

(g(u), u) ≤ µ3‖u‖22 + µ4, (4.13)

(g(u), w) ≥ d

dt

∫
U

G(u)dx+ εkG(u)− ε(µ1‖u‖22 + µ2)− |c||z(θtω)|(µ3‖u‖22 + µ4).

=
d

dt

∫
U

G(u)dx+ εkG(u)− (εµ1 + |c||z(θtω)|µ3)‖u‖22 − εµ2 − µ4|c||z(θtω)|. (4.14)

Where G̃(u) =
∫
U
G(u)dx. Collecting (4.5)-(4.14) and (4.4), showing that

(Q(ϕ, ω, t), ϕ) ≤ − d

dt

∫
U

G(u)dx− εkG(u) + (εµ1 + |c||z(θtω)|µ3)‖u‖22 + εµ2 + µ4|c||z(θtω)

+
c2|z(θtω)|2

2
√
λ0

(‖u‖22 + ‖w‖2) +
4ε2|c|2|z(θtω)|2

α
√
λ0

‖u‖22 +
α

4
‖w‖2 +

2

α
‖f‖2. (4.15)

Substituting all into (4.2) results in

1

2

d

dt
(‖ϕ‖2E + 2G(u)) +

ε

2
(‖u‖22 + ‖w‖2) +

δ

4
‖η‖2µ,2 +

α

2
‖w‖2 + εkG(u)

≤ c2|z(θtω)|2

2
√
λ0

(‖u‖22 + ‖w‖2) + (
4ε2|c|2|z(θtω)|2

α
√
λ0

+ |c||z(θtω)|µ3 + εµ1)‖u‖22

+
|c||z(θtω)|

2
‖u‖22 +

2

α
‖f‖2 + εµ2 + µ4|c| |z(θtω)|. (4.16)

By defining σ = min{ε, εk, δ
2
} and ‖ϕ‖2 = (‖u‖22 + ‖w‖2), the following equivalent system arises

1

2

d

dt
(‖ϕ‖2E + 2G(u)) + ρ(t, θtω)(‖ϕ‖2E + 2G(u)) ≤ 2

α
‖f‖2 + εµ2 + µ4|c||z(θtω)|. (4.17)
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Where

ρ(t, θtω) = σ − µ3|c||z(θtω)| − (
c2|z(θtω)|2

2
√
λ0

+
4ε2|c|2|z(θtω)|2

α
√
λ0

+ εµ1 +
|c||z(θtω)|

2
). (4.18)

Using Gronwall’s inequality on equation (4.17) over [0,t], it has been that

‖ϕ(t, ω, ϕ0)‖2E + 2G(u) ≤ e−2
∫ t
0 ρ(s,θsω)ds[‖ϕ0‖2E + 2G(u0)]

+(
2

α
‖f‖2 + εµ2)

∫ t

0

e−
∫ t
s ρ(τ,θτω)dτds

+µ4|c|
∫ t

0

e−
∫ t
s ρ(τ,θτω)dτ |z(θtω)|ds. (4.19)

Substitiuting ω by θ−tω, from (4.19) as a result

‖ϕ(t, θ−tω, ϕ0(θ−tω))‖2E + 2G(u) ≤ e−2
∫ t
0 ρ(s−t,θs−tω)ds[‖ϕ0(θ−tω)‖2E + 2G(u0)]

+(
2

α
‖f‖2 + εµ2+)

∫ t

0

e−
∫ t
s ρ(τ−t,θτ−tω)dτds

+µ4|c|
∫ t

0

e−
∫ t
s ρ(τ−t,θτ−tω)dτ |z(θs−tω)|ds.

≤ e
∫ 0
−t ρ(s,θsω)ds‖ϕ0‖2E

+(
2

α
‖f‖2 + εµ2)

∫ 0

−t
e−

∫ 0
s ρ(τ,θτω)dτds

+µ4|c|
∫ 0

−t
e−

∫ 0
s ρ(τ,θτω)dτ |z(θsω)|ds. (4.20)

As stated in (4.18), it is understood that

|c|(µ3 +
1

2
)

1

α
+ c2(

1

2
√
λ0

1√
2α

+
4ε2

α
√
λ0

1√
2α

) < σ. (4.21)

Note that (4.12) and (4.13) lead to the conclusion

kG(u) ≤ (g(u), u) + µ1‖u‖22 + µ2 ≤ (µ1 + µ3)‖u‖22 + µ2 + µ4. (4.22)

It follows from Lemma 4.1, ϕ0(θ−tω) ∈ B(θ−tω), and , and the tempered property of B(ω)

lim
t→+∞

e2
∫ 0
−t −ρ(τ,θτω)dτ [‖ϕ0(θ−tω)‖2τ + 2G(u0)] = 0. (4.23)

The following integral converges, as |z(θsω)| is tempered

ρ2(ω) = (
2

α
‖f‖2 + εµ2 + c)

∫ 0

−∞
e−

∫ 0
s ρ(τ,θτω)dτ (1 + |z(θsω)|)ds. (4.24)

Lemma 3.1 and the fact that g ∈ L2(U), yield

‖ϕ(t, θ−tω, ϕ0(θ−tω))‖2E ≤ ρ2(ω).

From (4.22)-(4.23) and Lemma 4.1, there exists a closed measurable absorbing ball B0(ω) = {ϕ ∈ E :
‖ϕ0(θ−tω)‖E ≤ ρ2(ω)} with a positive time T = T (0, B, ω) > 0 such that ϕ(t, θ−tω, ϕ0) = ϕ0 ∈ B0(ω) ∈
D(E) holds p-a.s. for ω ∈ Ω

‖ϕ(t, θ−tω, ϕ0(θ−tω))‖2E ≤ ρ
2(ω),

is complete the proof. �

26



Bakhet et al.; Asian Res. J. Math., vol. 19, no. 2, pp. 17-35, 2023; Article no.ARJOM.93501

5 Decomposition of Solutions

To obtain regularity estimates later, the nonlinear term in equation (3.3) was decomposed as in[28, 40, 41]. At
first, the following decomposition given on nonlinearity g(u) = g1(u) + g2(u) where g1, g2 ∈ C1 functions. These
functions satisfy the following conditions for some proper constant:

|g1(s)| ≤ C(|s|+ |s|5), ∀ s ∈ R,
sg1(s) ≥ 0 ,

∃ ρ2, ϑ1 ≥ 0 such that ∀ ϑ ∈ (0, ϑ1],

∃ cϑ ∈ R, ρ2G1(s) + ϑs2 − cϑ ≤ sg1(s), ∀ s ∈ R,

(5.1)

and 
|g′2(s)| ≤ C(1 + |s|p), ∀ s ∈ R, 0 < p < 5,

3G2(s)− C ≤ sg2(s),

− λ

8
s2 − C ≤ G2(s), ∀ s ∈ R,

(5.2)

where
Gi(s) =

∫ s
0
gi(r)dr, i = 1, 2.

The solution ϕ = (u,w)T of the system (3.15) was decomposed into two parts,

ϕ = ϕL + ϕN

where ϕL = (uL, wL), ϕN = (uN , wN ) respectively solves the following equations{
ϕ′L +H(ϕL) +Q1(ϕL) = 0,

ϕL(0, ω) = (u0, u1 + εu0 − cu0z(θtω))T , t ≥ 0,
(5.3)

and {
ϕ′N +H(ϕN ) +Q2(ϕ,ϕL) = Q̃2(ω),

ϕN (0, ω) = (0, εz(θtω), 0)T , t ≥ 0,
(5.4)

where

Q1(ϕL) =

 0
g1(uL)

0

 , Q2(ϕ,ϕL) =

 0
g(u)− g1(uL)

0

 ,

Q̃2(ω) =

 cuNz(θtω)
−cz(θtω)(vN − 2εuN + cuNz(θtω))− g(u) + f(x)

cuNz(θtω)

 .

(5.5)

To prove the existence of a compact random attractor for the RDS Φ, it is shown that the solutions of systems
(5.3) and (5.4) are similar to the solution of system (4.2), with one decaying exponentially and the other being
bounded in a higher regular space. In order to obtain the regularity estimate, some a priori estimate for the
solutions of system (5.3) on Ω× [0,∞] will be proven.

Lemma 5.1. Consider a bounded non-random subset B of E, for any ϕL(0, ω) = (u0, u1+εu0−cu0z(θtω))
T

∈ B,
there holds

‖ϕL(0, ω;ϕL(0, ω))‖2E ≤ r2
3(ω), (5.6)

where ϕL = (uL, vL)T satisfies (5.3).

Proof. By taking the inner product (·, ·)E of (5.3) in L2(U) with ϕL = (uL, vL)T , where vL = uLt + εuL, and
using initial values (u0, u1 + εu0 − cu0z(θtω))T , it follows that.

1

2

d

dt
‖ϕL‖2E + (H(ϕL), ϕL)E + (Q1(ϕL), ϕL) = 0, (5.7)
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there holds after a simple computation

(H(ϕL), ϕL)E ≥
ε

2

(
‖uL‖22 + ‖vL‖2

)
+
α

2
‖vL‖2, (5.8)

given that ε satisfies (4.4), the third term of (5.7) can now be estimated as.

(Q(ϕL), ϕL) =

(
0

g1(uL)

) (
uL
vL

)
= (g1(uL), uLt + εuL)
= d

dt
G1(uL) + ε

∫
U
g1(uL)uLdx.

(5.9)

As a result of (5.1)2 and (5.1)3, it follows

G1(uL) ≥ 0 , g1(uL)uL ≥ 0,
d
dt
G1(uL) + ε

∫
U
g2(uL)uLdx ≥ d

dt
G1(uL) + k0εG1(uL) + εϑ‖uL‖2 − εcϑ.

(5.10)

By combining (5.7)-(5.10) and (5.3), it follows

d

dt

(
‖ϕL‖2E + 2G̃1(uL)

)
+ 2σL

(
‖ϕL‖2E + 2G̃1(uL)

)
≤ ρ, (5.11)

whereas ρ = εcϑ and σL = min( ε
2
, α

2
, ε

4
, k0ε)

‖ϕL‖2E + 2G̃1(uL) ≥ ‖ϕL‖2E ≥ 0, (5.12)

hence
ϕL(0,ω) = (ϕ0(θ−tω) + cuz(θ−tω))>

≤ (r2(ω) + cuz(θtω)) = ρ2(ω) ∈ B0(ω).
(5.13)

By combining (5.1)1, (5.11), and (5.13), and applying Gronwall’s inequality to the result over [0, t], it can be
proven with the definition of B0(ω) and Lemma 4.2.

‖ϕL(0, ω, ϕL(τ,ω))‖E ≤ r2
3(ω). (5.14)

The proof is completed. �

Lemma 5.2. There exists a positive constant σ1 ≥ 0, such that for any bounded non-random subsetB of E, it

holds that for any ϕL(0, ω) = (u0, u1 + εu0 − cu0z(θtω))
T

∈ B, we have

‖ϕL(0, ω;ϕL(0, ω))‖2E ≤ r2
4(ω)e2σ1(ω)t, t ≥ 0, (5.15)

whereas ϕL = (uL, vL)T satisfies (5.3).

Proof. Like Lemma 5.1, consider equation (5.7). According to (5.1), (g1(uL), (uL)) ≥ 0, g1(0) = 0 has a
non-negative value of. By applying the Sobolev embedding theorem H1 ⊂ L6 ⊂ L4 ⊂ L2 and using (5.6), a
conclusion can be drawn

0 ≤ G̃1(uL) ≤
∫
U

G1(u1)dx

≤ C(‖uL‖2 + ‖uL‖6L6)
≤ ρ2(ω)‖uL‖21,

σ1‖uL‖21 ≥ σ1
ρ2(ω)

G̃1(uL), ∀ uL ∈ R,

(5.16)

As a result of (5.7) and (5.16), the following conclusion can be drawn

d

dt
(‖ϕL‖2E + 2G̃1(uL)) + 2σ1‖ϕL‖2E +

σ1

2ρ2(ω)
G̃1(uL) ≤ ρ. (5.17)
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Since σ1(ω) = min [σ1,
σ1

2ρ2(ω)
].

By utilizing Gronwall’s inequality on equation (5.17), the following result is obtained

‖ϕL(0, ω, ϕL(0, ω)‖2E ≤
(
‖ϕL(0, ω)‖2E + G̃1(uL(0))

)
e2σ1(ω)t + ρ

∫ t

0

e−2σ1(s,ω)ds

≤
(
ρ2

1(ω) + G̃1(uL(0))
)
e2σ1(ω)t + ρ

∫ t
0
e−2σ1(s,ω)ds,

≤ r2
4(ω)

(5.18)

By using (5.1)1, the following estimate can be obtained

G̃1(uL) =

∫
U

G1(u1)dx ≤ C(‖uL‖2 + ‖uL‖6L6) ≤ Cg‖uL‖6H1 ≤ Cpρ1
6(ω), ∀ uL ∈ R. (5.19)

By combining all equations (5.13) and (5.18)-(5.19), the final result of (5.15) can be obtained

r2
4(ω) ≤

(
ρ2

1(ω) + Cpρ1
6(ω)

)
e2σ1(ω)t + ρ

∫ t

0

e−2σ1(s,ω)ds.

The proof is completed. �

Lemma 5.3. Assume that (h1) − (h3) hold, and (5.1)-(5.2) are satisfied, there exists a random radius r5(ω),
such that for P-a.e.ω ∈ Ω, it holds. ∥∥∥A 1+ν

2 uN

∥∥∥2

+
∥∥∥A ν

2 uNt

∥∥∥2

≤ r5(ω), (5.20)

whereas

ν = min{1

4
,

4− p
4
}, ∀ 0 ≤ p ≤ 4. (5.21)

Proof. According to (5.6), (4.1), and the definition of ϕN = ϕ − ϕL, there exists a random variable r(ω) > 0
such that

max{‖ϕ(0, ω, ϕ(0, ω))‖E , ‖ϕN ((0, ω, ϕN (0, ω)))‖E} ≤ r(ω). (5.22)

By taking the inner product of (5.4) with (AνϕN , A
νwN )T using the inner product (·, ·)E , it can be found that.(

ϕ′N , A
νϕN

)
+ (H(ϕN ), AνϕN ) =

(
Q̃2(ϕN , ω, t), A

νϕN
)

(5.23)

By using (5.21) and referring to Lemma 4.1, the following result can be obtained

(H(ϕN ), AνϕN )E ≥
ε

2

(∥∥∥A 1+ν
2 uN

∥∥∥2

2
+
∥∥∥A ν

2wN

∥∥∥2
)

+
α

2

∥∥∥A ν
2wN

∥∥∥2

, (5.24)

Next, the right-hand side of equation (5.23) will be estimated, resulting in(
Q̃2(ϕN , ω, t), A

νϕN
)

=

((cuNz(θtω), AνuN ))− (cwNz(θtω), AνwN )
+ (2cεuNz(θtω), AνwN )− (c2uNz

2(θtω), AνwN )
− (g(u)− g1(uL), AνwN ) + (f(x), AνwN ).

(5.25)

Now, the right term in equation (5.25) will be handled by utilizing (4.5) to (4.10) and (5.21), leading to

((cuNz(θtω), AνuN )) ≤ |c||z(θtω)|‖A
1+ν
2 uN‖2, (5.26)

(cwNz(θtω), AνwN ) ≤ |c||z(θtω)|‖A
ν
2wN‖2, (5.27)
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(2cεuNz(θtω), AνwN ) ≤ ε|c||z(θtω)|
2
√
λ0

(
‖A

1+ν
2 uN‖2 + ‖A

ν
2wN‖2

)
, (5.28)

(c2uNz
2(θtω), AνwN ) ≤ |c|

2|z(θtω)|2

2
√
λ0

(‖A
1+ν
2 uN‖2 + ‖A

ν
2wN‖2), (5.29)

(f(x), AνwN ) ≤ 1

α
‖A

ν
2 f(x)‖2 +

α

4
‖A

ν
2wN‖2. (5.30)

For the nonlinear term, it is straightforward to demonstrate that

(g(u)− g1(uL), AνwN ) = (g(u)− g1(uN ), Aν(uN + εuN − cuNz(θtω)))
≤ d

dt

∫
U

(g(u)− g1(uL))AνuNdx+
∫
U

(g(u)− g1(uL))AνuNdx
−
∫
U

(g′(u)ut − g′1(uL)uLt)A
νuNdx− C

∫
U

(g(u)− g1(uL))AνuNz(θtω)dx,

Next, by using (1.2), (5.1) to (5.2), the Cauchy-Schwartz inequality, and the Young inequality, the following
conclusion can be reached∫

U

(g′(u)ut − g′1(uL)uLt)A
νuNdx =

∫
U

((g′1(u)− g′1(uL))ut + g′1(uL)uNt + g′2(u)ut)A
νuNdx, (5.31)

As a result, the following inequalities are obtained∫
U

(g′1(u)− g′1(uL))utA
νuNdx ≤ C

∫
U

g′′1 (u+ θ(u− uL))|u− uL||ut||AνuN |dx

≤ C
∫
U

(
1 + |u|3 + |uL|3

)
|uN ||AνuN ||ut|dx

≤ C
(
1 + ‖u‖3L10 + ‖uL‖3L10

)
‖uN‖

L
10

1−4ν
‖AνuN‖

L
10

1+4ν
‖ut‖L10

≤ k1 (ω) ‖A
1+ν
2 uN‖

≤ 4εk2
1 (ω) + ε

16
‖A

1+ν
2 uN‖2,

(5.32)

and note that ν ≤ 4−p
4∫
U

g′2(u)utA
νuNdx ≤ C

∫
U

(1 + |u|p)|ut||AνuN |dx

≤ C(1 + ‖u‖p
L 10

4−4ν

)‖AνuN‖L 10
1+4ν
‖ut‖L2

≤ C(1 + ‖∇u‖p2)‖AνuN‖L 10
1+4ν
‖ut‖L6

≤ 4εk2
2 (ω) + ε

16
‖A

1+ν
2 uN‖2,

(5.33)

∫
U

g′1(uL)uNtA
νuNdx ≤ C(1 + ‖uL‖4L10)‖A

1+ν
2 uN‖L 10

1+4ν
‖AνuNt‖

L
10

1+4ν

≤ C(1 + ‖uL‖4L10)‖A
1+ν
2 uN‖L 10

1+4ν
‖AνuNt‖

L
10

1+4ν

≤ 4εk3 (ω) (‖A
ν
2 uN‖2 + |ε|2) + ε

16
‖A

1+ν
2 uN‖2L 10

1+4ν

(5.34)

and ∫
U

(g(u)− g1(uL)) |AνuN ||z(θtω)|dx

≤ C
∫
U
g′ (u+ θ(u− ul)) |u− uL||AνuN ||z(θtω)|dx

≤ C
∫
U

(
1 + |u|4 + |uL|4

)
|uN ||AνuN ||z(θtω)|dx

≤ C
(
1 + ‖u‖4L10 + ‖uL‖4L10

)
‖uN‖

L
10

1−4ν
‖AνuN‖

L
10

1+4ν
|z(θtω)|

≤ 4ε
(
k2

4 (ω) + |z(θtω)|2
)

+ ε
16

∥∥∥A 1+ν
2 uN

∥∥∥2

.

(5.35)

By combining equations (5.24) to (5.35) into (5.23), it can be demonstrated that

1

2

d

dt

(
‖A

ν
2 ϕ2‖2E + 2 (g(u)− g1(uL))

)
+
ε

4

∥∥∥A ν
2 ϕ2

∥∥∥2

E
+
kε

2
(g(u)− g1(uL))

≤ µ2|c||z(θtω)|‖A
ν
2 ϕ2‖2E + C(ω)[1 + k2

1(ω) + k2
2(ω)

+ k2
3(ω) + k2

4 (ω) + |z(θtω)|2 + |z(θtω)|4 + ‖A
ν
2 f(x)‖2].

(5.36)
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By applying Gronwall’s inequality to equation(5.36), the following result is obtained.∥∥∥A ν
2 ϕ2(t, ω, ϕ(0, ω))

∥∥∥2

E

≤
(
‖A

ν
2 ϕ2(0, ω, ϕ(0, ω))‖2E + 2(g(u(0, ω, ϕ(0, ω)))− g1(uL (0, ω, ϕ(0, ω))

)
≤
(
‖A

ν
2 ϕ2‖2E + (g(u)− g1(uL))

)
e2

∫ t
0 (σ−µ2|c||z(θsω)|))(s,ω)ds

+
∫ 0

−t ρ1(ω)e2
∫ s
0 (σ−µ2|c||z(θςω)|)(ς,ω)dςds.

(5.37)
put

ρ1(ω) = C(ω)[1 + k2
1(ω) + k2

2(ω) + k2
3(ω) + k2

4(ω)

+ |z(θtω)|2 + |z(θtω)|4 + ‖A
ν
2 f(x)‖2]

(5.38)

similar to above equation∫
U

(g(u)− g1(uL))AνuNdx ≤ C
∫
U

(g′(u+ θ(u− uL))|u− uL||AνuN |dx

≤ C
∫
U

(
1 + |u|4 + |uL|4

)
|uN ||AνuN |dx

≤ C(1 + ‖u‖4L10 + ‖uL‖4L10)‖uN‖
L

10
1−4ν
‖AνuN‖

L
10

1+4ν

≤ k5 (ω) ‖A
1+ν
2 uN‖‖AνuN‖

≤ εk2
5 (ω) ‖A

ν
2 uN‖2 +

ε

4
‖A

1+ν
2 uN‖2,

(5.39)

by (5.38) and (5.39), to get

‖Aνϕ2(t, ω, ϕ(0, ω))‖2E ≤ r5(ω),

this complete the proof. �

6 Random Attractors

In this section, the existence of a D-random attractor for the random dynamical system Φ associated with
system (3.15) on R5 is established. This is done by using Lemma 4.1, which shows that, Φ has a closed random
absorbing set in D. This, combined with the D-pullback asymptotic compactness, implies the existence of a
unique D-random attractor. The D-pullback asymptotic compactness of Φ will be further demonstrated through
the decomposition of solutions, as discussed in[40, 41, 47, 48].

Lemma 6.1. assume that (h1) − (h3) holds, it can be concluded that the random dynamical system (RDS) Φ
associated with equation (3.5) has a uniformly attracting set Λ(0, ω) ⊂ E, and a random attractor A(0, ω) ⊆
Λ(0, ω) ∩B0(ω), for any time t ≥ 0 and any value of ω ∈ Ω.

Proof. For all t ≥ 0, ω ∈ Ω, in accordance with Lemma 5.3, define Bν(0, ω) as the closed ball in H2+2ν ×H2ν

with radius r5(ω)
Λ(0, ω) = Bν(0, ω), (6.1)

next, Λ(0, ω) ∈ D(E). Since H2+2ν ×H2ν ↪→ H2
0 (U)× L2(U), it is now necessary to demonstrate the attractive

property of Λ(0, ω) : for every B(0, ω) ∈ D(E),

lim
t→∞

dH(Φ(t, θ−tω,B(0, θ−tω)),Λ(0, ω)) = 0. (6.2)

As per Lemma 5.2, this implies that

ϕN (0, ω, ϕ(0, ω)) = ϕ(0, ω, ϕ(0, ω))− ϕL(0, ω, ϕ(0, ω)) ∈ Λ(0, ω). (6.3)
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Therefore, Lemma 5.2 yields

inf
ψ∈Λ(0,ω)

‖ϕ(0, ω, ϕ(0, ω))− ψ‖2E ≤ ‖ϕL(0, ω, ϕL(0, ω))‖2E ≤ r2
4(ω)e2σ1(ω)t, t ≥ 0. (6.4)

However, for all t > 0
dist(Φ(t, θ−tω,B(0, θ−tω)),Λ(0, ω)) ≤ r2

4(ω)e−2σ1(ω)t. (6.5)

Finally, it is easy to see from the relationship between Φ and Ψ that for any non-random, bounded set B ⊂ E,
it holds true with probability P-a.s.

dist(Ψ(t, θ−tω,B(0, θ−tω)),Λ(0, ω))→ 0, t→ +∞. (6.6)

As a result, the random dynamical system Φ connected to (3.5) has a random attractor A(0, ω) ⊆ Λ(0, ω) ∩
B(ω), A = {A(0, ω) : t ≥ 0, ω ∈ Ω} ∈ Ω in R5.
Then the proof is completed. �

Theorem 6.2. Assuming (h1) − (h3) hold, the continuous cocycle Φ associated with problem (3.8) or random
dynamical system Φ has a unique D-pullback attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in R5.

Proof. According to Lemma 4.2, the continuous cocycle Φ has a closed random absorbing set {A(ω)}ω∈Ω in D.
Additionally, as per (3.17) and Lemma 6.1, the continuous cocycle Φ is D-pullback asymptotically compact in
R5. Thus, the existence of a unique D- random attractor for Φ is a direct result of Lemma 2.1. �

7 Conclusion

To summarize, by Lemma 4.1, Φ has a closed random absorbing set in D. This, combined with the D-pullback
asymptotic compactness, implies the existence of a unique D-random attractor. We established the D-pullback
asymptotic compactness of Φ through the decomposition of solutions and proved the existence of a D-random
attractor for the random dynamical system Φ associated with system (3.15) in R5. �
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