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ABSTRACT 
 
In order to estimate the power output of a wind turbine, optimise its sizing and forecast the economic 
rate of return and risks of a wind energy project, wind speed distribution modelling is crucial. For 
which, Weibull distribution is considered as one of the most acceptable model. However, this 
distribution does not fit certain wind speed regimes. The objective of this study is to model the 
frequency distribution of the three-hourly wind speed at ten sites of Burkina Faso. In this context, we 
compared the accuracy of five distributions (Weibull, Hybrid Weibull, Rayleigh, Gamma and inverse 
Gaussian) which gave satisfactory results in this field. The maximum likelihood method was used to 
fit the distributions to the measured data. According to the statistical analysis tools (the coefficient of 
determination and the root mean square error), it was found that the Weibull distribution is most 
suited to the Bobo, Dédougou, Ouaga and Ouahigouya sites. On the other hand, for the sites of 
Bogandé, Fada and Po, the hybrid Weibull distribution is the most suitable one. As to the inverse 
Gaussian distribution, it is the most suitable for the Boromo, Dori and Gaoua sites. In addition, the 

Original Research Article 



 
 
 
 

Boro et al.; CJAST, 39(22): 71-83, 2020; Article no.CJAST.59487 
 
 

 
72 

 

analysis focused on comparing the mean absolute error of the annual wind power density estimation 
using the distributions examined. The Hybrid Weibull distribution was found to have a minimal mean 
absolute error for most study sites.  

 
 
Keywords: Wind potential; Weibull distribution; power density; vertical profile. 
 

1. INTRODUCTION 
 
Wind energy is one of the fastest growing sectors 
and one of the renewable energy sources widely 
used to meet energy demand in urban and rural 
areas in some African countries [1]. In fact, the 
pollution caused by the overuse of fossil fuels 
and their limited reserves make wind an 
alternative energy source for overcoming man-
made environmental problems. The use of wind 
energy as green and sustainable energy can 
reduce dependence on fossil fuels which are the 
main sources in countries' energy supply chains. 
Wind energy has been used worldwide over the 
last decades, but its growth has been most 
significant in recent years. Assessing the wind 
energy characteristics and potential is a critical 
and major step in the economic development of 
wind energy. Actually, the wind speed frequency 
distribution represents wind speed data collected 
over a long period of time. Thus, this information 
is essential for assessing the wind energy 
potential of a particular location. It is also worth 
mentioning that wind turbines installed at two 
different sites with similar average wind speeds 
can generally produce completely different 
energy due to differences in wind speed 
characteristics. This further underlines the 
importance of knowing the wind speed 
distribution. As a rule, a frequency distribution 
can be calculated for a series of data. The wind 
speed frequency distribution can be determined 
using two approaches. The former is an 
approach based on wind speed time series and 
the latter on probability distribution functions. The 
time series approach seems to be more accurate 
owing to the direct use of the original wind speed 
data. However, since time series wind speed 
data are often huge, it would be preferable to 
have only a few main parameters so as to 
explain the behaviour and characteristics of a 
wide range of wind speed data [2]. In this 
respect, wind speed data can be fitted using 
probability distribution functions that simplify the 
characteristics of a wind regime into a limited set 
of parameters [2]. The probability density 
function of a random variable is a mathematical 
model that characterizes the probability that this 
variable will occur at a certain point in time in 
each observation interval. The cumulative 

distribution function, on the other hand, specifies 
the probability that a variable is less than or 
equal to a particular value. 
 

In recent decades, the issue of modelling wind 
speed frequencies has motivated researchers to 
use different distribution functions in order to 
identify the most appropriate ones. The two-
parameter Rayleigh and Weibull distribution 
functions are two popular functions that have 
been widely used in many studies [3,4,5]. There 
are many other functions that have been typically 
used for wind energy evaluations such as the 
Generalized Gamma [6], gamma [2], inverse 
gamma [7], inverse Gaussian [8], 2- and 3-
parameter lognormal [9], Gumbel [10], Burr [8], 
Erlang [11], Kappa [12], Wakeby [11] and 
Generalized Extreme Value distribution [9]. In 
this regard, the identification of the most suitable 
functions that offer the best adjustments to the 
data are of vital importance. Indeed, the use of a 
distribution function that more precisely fits the 
wind speed dataset is useful to reduce 
uncertainties in wind energy estimation. To our 
knowledge, there is a lack of extensive research 
on the determination of appropriate frequency 
distribution models for estimating the wind speed 
distribution across the different regions of 
Burkina Faso. Therefore, in this study, the 
capacity of different distribution functions was 
evaluated to provide a better fit to wind speed 
data at ten sites located throughout the whole 
country.  
 

The main objective is to identify the most 
appropriate distribution function for the wind 
speed dataset at the different study sites. With 
this end in mind, the performance of the 
Rayleigh, Weibull, hybrid Weibull, Gamma and 
inverse Gaussian distribution functions was 
compared. Their efficiency was also statistically 
evaluated based on statistical parameters. To 
estimate the wind energy available at these 
different sites, investors can directly use the 
distribution appropriate to each study site. 
 

2. STUDY AREA AND DATA 
PRESENTATION 

 

With a surface area of 274,200 km2, Burkina 
Faso is a country located in the heart of West 
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Africa between latitudes 9°2'N and 15°05'N and 
longitudes 2°20'E and 5°30' W at an               
average altitude of 300 m above sea level. This 
landlocked country is surrounded by                          
six other countries: Mali in the West and              
North, Niger in the East and Benin, Togo, Ghana 
and Ivory Coast in the South. In Burkina                 
Faso, the climate classification highlights 3 major 
climate zones according to rainfall and 
temperature – namely the Sahelian,                  
Sudano-Sahelian and Sudanese climate zone. 
The Sahelian climate zone lies to the                
North of the 14th parallel and characterized by 
an annual rainfall less than 650mm. The  
Sudano-Sahelian climate zone is located 
between latitudes 11°30N and 14° N 
characterized by an annual rainfall ranging from 

650 to 1,000 mm. As to the Sudanese climate 
zone, it is situated in the South at a latitude of 
11°30'N characterized by an annual rainfall 
above 1,000 mm [13]. Our study was conducted 
at the Ouahigouya site (Sahelian climatic zone). 
Data recorded and provided by the 
meteorological station of the Burkina Faso 
National Meteorological Agency (ANAM in 
French) over the period from January 2006 to 
December 2016 were used in this study. The 
series of data used consists of wind speeds 
measured every three hours using a cup 
anemometer positioned 10 m above ground 
level, mounted on a mast. Fig. 1 provides an 
overview of the study area and Table 1 shows 
the geographical coordinates of the sites 
selected for the study. 

 

 
 

Fig. 1. Geographic location of the ten study sites 
 

Table 1. Geographical coordinates of the study sites 
 

Site Longitude Latitude Altitude(m) 
Dori 00˚02’ W 14˚ 02’N 282 
Ouahigouya 02˚ 19’ W 13˚ 31’N 328 
Bogandé 00˚08’W 12˚59’N 295 
Fada N’goura 00˚25’ E 12˚ 4’ N 298 
Po 01˚09’W 11˚10’N 305 
Ouagadougou 01˚ 40’W 12˚ 19’N 299 
Dédougou 03˚28’W 12˚28’N 302 
Boromo 02˚56’W 11˚45’N 325 
Bobo Dioulasso 04˚18’W 11˚10’N 423 
Gaoua 03˚12’ W 10˚18  N 329 
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3. METHODS 
 

3.1 Modelling the Wind Speed Frequency 
Distribution 

 

As a rule, the wind speed frequency distribution 
can be determined using two approaches – one 
based on wind speed time series and the other 
on probability distribution functions. The time 
series approach appears to be more accurate 
due to the direct use of the original wind speed 
data. However, since time series wind speed 
data are often huge, it would be preferable to 
have only a few main parameters so as to 
explain the behaviour and characteristics of a 
wide range of wind speed data [2]. For this 
purpose, the use of a continuous probability 
density function instead of a histogram makes it 
possible to calculate the statistical parameters 
analytically (such as mean velocity, median, 
Skewness, kurtosis, etc.). The empirical 
distribution of the measured mean wind speeds 
is then approximated by theoretical distribution 
functions. Knowledge of the statistical distribution 
law of wind speed from measured wind data is 
useful for wind energy applications, as the use of 
an analytical representation of the speed 
distribution has clear advantages. It is this 
approximate distribution that is used in the 
turbine formulas instead of the empirical 
histogram. It greatly simplifies the calculation of 
wind speed behaviour characterization as well as 
the potential and performance of wind energy 
systems [14]. Therefore, it is very important to 
determine the most appropriate functions that 
offer the best adjustments to wind speed data. 
Wind speed distribution modelling studies have 
been oriented towards models that combine 
power and exponential function. In most cases, 
the Weibull, Rayleigh and hybrid Weibull 
probability distributions are used in wind data 
analysis. In this study, five distribution functions 
were used to describe wind speed frequency 
distributions. These are the Weibull, Hybrid 
Weibull, Gamma, Rayleigh and inverse Gaussian 
distribution functions. Several methods are used 
to determine the distribution parameters [15,16, 
17]. The one used in this study to calculate the 
parameters of the different distribution functions 
is the maximum likelihood method because of its 
accuracy at our study site [4].The theoretical 
desciptions of probability density functions are 
discussed in the following sections. 
 

3.1.1 The two-parameter Weibull distribution 
 

Based on the literature review [18,19,20], it 
should be noted that the two-parameter Weibull 

distribution is the most commonly used 
mathematical model to estimate the wind energy 
available at a given site. It was first used by 
Davenport in 1963 for the calculation of wind 
stress [21]. In 1974, Justus used it for wind 
power [22]. Weibull modelling is general in the 
sense that it includes exponential (k=1) and 
Rayleigh (k=2) distributions which are only 
special cases of this function. The Weibull 
distribution function and the cumulative 
distribution function are respectively given by the 
regular expressions (1) and (2) [23]: 
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Where 
 , ,f v c k

 is the frequency distribution of 
measured wind speeds or the frequency of 
occurrence (frequency of occurrence) of wind 
speeds, (k) is the dimensionless shape 

parameter ( 0k ) (it characterizes the shape of 
the frequency distribution), (c) is the scale 
parameter, expressed in metres per second and 
of positive value (it indicates the average wind 
speed characteristic of the site). The shape and 
scale parameters are estimated by the maximum 
likelihood method using equations (3) and (4) 
respectively. 
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Where iv  is the wind speed at time step i and n 
is the number of non-zero wind speed 
observations. Equation (3) can be solved           
using an iterative procedure (k=2 is the 
appropriate initial conjecture). Then, equation (4) 
is solved explicitly. Care should be taken to apply 
equation (3) only to non-zero wind speed data 
points. 
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3.1.2 The two-parameter hybrid Weibull 
distribution  

 
At sites where the frequency of calm winds is 
relatively high (> 15% of the total number of wind 
observations) the Weibull distribution does not 
perfectly fit the situation. Indeed, this rather 
significant proportion of calm winds cannot be 
neglected. We therefore use the so-called hybrid 
Weibull distribution, defined by the probability 

density function 
 , ,hwf v k c

 described by: 
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0, , 1 exp
k k
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k v v
f v k c F
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with 0v                                                   (5)  
      

Where 0ff is the frequency of calm winds, given 

by 
 0ff f v

 for 0v  . The maximum likelihood 
method can be used to estimate the parameters 
of this distribution. As indicated above, the 
classical Weibull distribution is not appropriate to 
areas where calm wind frequencies are relatively 
high. In this case, it is advisable to process the 
data by removing the calm wind values and 
listing them separately [24]. The shape and scale 
parameters are given by the expressions 
obtained with the classical weibull distribution, 
i.e. equations (3) and (4). 
 
3.1.3 Rayleigh distribution  
 
The Rayleigh distribution is a special case of the 
Weibull distribution for the case where the shape 
factor k is equal to 2. The coefficient of skewness 
and the flattening coefficient are constants. Its 
probability density and cumulative distribution 
function are given by equations (6) and (7) 
respectively: 
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The determination of the scaling parameters by 
the maximum likelihood method does not require 
an iterative procedure and is given by equation 
(8) [24]: 
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3.1.4 The inverse Gaussian distribution 

function 
 
The inverse Gaussian distribution is suggested 
as an alternative to the three-parameter Weibull 
distribution for the description of wind speed data 
with low wind frequencies [25]. Equations (9) and 
(10) respectively give the probability density 
function and cumulative probability function of 

the inverse Gaussian distribution in which k is 

the shape parameter and c the scale parameter 
[26].  
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Where  is the cumulative function of the 
standard normal distribution [27]. Following the 
maximum likelihood method, the expressions of 
the scale and shape parameters which do not 
require any iterative procedure are given by 
equations (11) and (12). 
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3.1.5 The two-parameter gamma distribution 

function 
 

Statistical studies have shown that the two-
parameter gamma distribution is adequate to 
describe the distribution of surface wind speeds 
almost everywhere in Europe [28]. The 
probability density function and the cumulative 
function of the 2-parameter generalized Gamma 
distribution are given by equations (13) and (14), 
respectively. 
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In the gamma distribution, k  is the shape 

parameter, c is the scale parameter and


 is the 
lower incomplete gamma function given by 
equation (15) [29]:  
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The shape and scale parameters, evaluated 
using the maximum likelihood method [24,30, 
[31], are given by equations (16) and (17) and 
require no iterative procedure. 
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3.2 Model Validation Test 
 
For the purpose of testing the different methods, 
the statistical analysis parameters viz., 
Coefficient of Determination (R

2
) and Root Mean 

Squared Error (RMSE) were computed by Eqs. 
(18) and (19), and are given as below [32]: 
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Where n is the total number of intervals, iy is the 

frequency of the observed values, ix is the 
frequency of the values obtained from probability 

distribution models and y  is the mean value of 

iy . A model is said to be ideal if it is 
characterized by a value of zero for RMSE and 1 

for the parameter
2R . 

 

3.2.1 Relative percentage error in wind power 
density estimation 

 
According to Celik [33], in the field of wind 
energy, speed distribution functions are 
ultimately used to model wind energy density. 
Therefore, the most important criterion for the 
suitability of a potential wind speed distribution 
function should be based on its effectiveness in 
predicting the observed wind power density. In 
addition, a distribution may be better for fitting 
the histogram of observations but not for 
estimating the power density.  For example, the 
Weibull and Rayleigh models were compared by 
Ahmed and Mahammed in (2012) [34]. They 
found that, on an annual scale, the Weibull 
distribution matched the measured data better 
than the Rayleigh distribution, but the latter 
provides greater accuracy in estimating power 
density over 9 months. This is done by 
comparing the mean absolute errors in 
estimating wind energy using the five 
distributions and the observed data. For a given 
theoretical probability density function fitted to 
wind speed data, the wind power corresponding 
to a particular wind speed is given by equation 
(20). 
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Where 


is the air density. Another popular 
approach is to compare the mean power           
density generated from the theoretical probability 
density function with the mean power density 
calculated from observed wind speed data.            
The former density is, then, obtained by 
integrating equation (20) and given by equation 
(21). 
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The latter density is given by equation (22). 
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The difference between the theoretical power 

density ( thP ) and the observed power density           

( obP ) is often represented by the mean absolute 
percentage error given by expression (23).    
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4. RESULTS AND DISCUSSION 
 

4.1 Adjustment of Measured Data 
 
As mentioned earlier in this study, we tested the 
effectiveness of five distributions that are widely 
applied to adjust wind speed, namely Weibull, 
Hybrid Weibull, Rayleigh, Gamma and inverse 
Gaussian. The graphs in Fig. 2 illustrate the 
histograms of wind speed data fitted by the five 
distribution functions for each study site. 
Graphically, it can be noticed that the Rayleigh 
function is unsuitable for the data observed for all 
study sites while the other functions are 
acceptable. Table 2 presents the parameters of 
the considered distribution functions obtained 
using the maximum likelihood method in 
MATLAB software. 
 

4.2 Adjustment Performance Indicators 
 
In this study, the goodness of fit of the different 
distribution functions is evaluated to characterize 
wind speed distribution for ten sites throughout 
the whole Burkinabe territory. To better assess 
the fit quality, we applied the most commonly 
used statistical indicators, namely the coefficient 

of determination (
2R ) and the root mean square 

error (RMSE). Table 3 presents the statistical 
indicator values obtained and the precision rank 
for the distributions studied. These indicators are 
presented graphically in Figs. 3 and 4. For the 
ten sites studied, the suitable distributions are 
those with the lowest root mean square error 
values (close to zero) and the highest coefficient 
of determination (closer to unity).  
 

It should be noted that, on the basis of all the 
statistical indicators, the Weibull distribution is 
the most appropriate one for the sites of Bobo 
(k=2.58, c=3.76), Dédougou (1.83, c=3.27), 
Ouaga (k=1.97, c=3.15) and Ouahigouya 
(k=1.93, c=2.51). For the Bogandé, Fada and Po 
sites, the hybrid Weibull distribution is the most 
suitable. The shape and scale parameters of this 
distribution for these three sites are respectively 
(k=1.93, c=3.18), (k=1.18, c=2.48), (k=1.93, 
c=2.51). It is notable that the weibull distribution 
has a performance close to that of the hybrid 
distribution at these three sites. Therefore, it can 
be used to model wind speed because of its 
popularity and for comparison purposes. The 
inverse Gaussian distribution is most suited to 

the Boromo (=0.72,


=1.09), Dori (=0.77,


=1.06)  and Gaoua (=1.70,


=1.75) sites. The 
Rayleigh distribution is the least suitable one, 
especially at the sites of Bobo and Ouahigouya. 
Overall, the calculated statistical parameters 
show that the distributions used model the real 
distributions very well with a coefficient of 
determination ranging between 0.741 and 0.955. 
The major conclusion that can be inferred from 
the analysis of Figs. 3 and 4 is that the most 
efficient distribution function is not similar across 
sites. 
 

4.3 Power Density Estimation Error 
 

In addition to the goodness-of-fit indicators (
2R , 

RMSE), the reliability of each model is assessed 
in terms of estimating the wind energy density 
using the mean absolute error between the 
measured wind energy density and that expected 
from the models tested. Table 4 presents           
the annual wind power density calculated using 
the data measured and the annual wind          
power density estimated using the five

Table 2. Annual shape and scale parameters of five (05) distributions for the ten study sites 
using the maximum likelihood method 

 
Station Weibull Hybrid Weibull Gamma Rayleigh Inverse Gaussian 
 k c k c k c k c k c 
Bobo 2.58 3.76 2.58 3.76 6.34 0.52 2 2.42 10.60 3.02 
Bogandé 1.93 3.18 1.93 3.18 3.42 0.81 2 2.06 4.07 2.32 
Boromo* 2.25 2.55 2.25 2.55 4.87 0.46 2 1.23 0.72 1.09 
Dédougou 1.83 3.27 1.83 3.27 3.43 0.84 2 2.21 5.03 2.57 
Dori* 2.08 2.28 2.08 2.28 4.21 0.47 2 1.16 0.77 1.06 
Fada 1.89 2.48 1.89 2.48 3.43 0.64 2 1.57 2.45 1.71 
Gaoua 1.90 3.07 1.90 3.07 3.36 0.80 2 1.76 1.70 1.75 
Ouaga 1.97 3.15 1.97 3.15 3.62 0.76 2 2.14 6.38 2.56 
Ouahi. 1.79 2.97 1.79 2.97 3.09 0.84 2 1.93 2.99 2.10 
Po 1.93 2.51 1.93 2.51 3.68 0.60 2 1.52 1.96 1.60 
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Table 3. Root mean square error, coefficient of determination and rank between theoretical and 
observed distributions for the ten study sites 

 
Site Distributions RMSE R² Rank 
Bobo Weibull 0.0418 0.8214 1 

Hybrid Weibull 0.0419 0.8204 2 
Gamma 0.0419 0.7753 3 
Rayleigh 0.1111 -0.2656 5 
Inverse Gaussian 0.0834 0.2883 4 

Bogandé Weibull 0.0281 0.8912 3 
Hybrid Weibull 0.0267 0.9012 1 
Gamma 0.0267 0.7483 2 
Rayleigh 0.0813 0.0880 5 
Inverse Gaussian 0.0648 0.4202 4 

Boromo Weibull 0.1363 0.1293 4 
Hybrid Weibull 0.1329 0.1716 3 
Gamma 0.1329 -0.0914 5 
Rayleigh 0.1130 0.4012 2 
Inverse Gaussian 0.0691 0.7760 1 

Dédougou Weibull 0.0236 0.9281 1 
Hybrid Weibull 0.0251 0.9189 2 
Gamma 0.0251 0.8531 3 
Rayleigh 0.0806 0.1606 5 
Inverse Gaussian 0.0667 0.4259 4 

Dori 
 

Weibull 0.1061 0.3997 5 
Hybrid Weibull 0.1035 0.4289 3 
Gamma 0.1035 0.2137 4 
Rayleigh 0.0878 0.5888 2 
Inverse Gaussian 0.0696 0.7416 1 

Fada Weibull 0.0229 0.9516 3 
Hybrid Weibull 0.0221 0.9550 1 
Gamma 0.0221 0.8650 2 
Rayleigh 0.0811 0.3943 5 
Inverse Gaussian 0.0633 0.6311 4 

Gaoua Weibull 0.0804 0.3996 4 
Hybrid Weibull 0.0785 0.4280 2 
Gamma 0.0785 0.2078 3 
Rayleigh 0.0992 0.0851 5 
Inverse Gaussian 0.0569 0.6993 1 

Ouaga Weibull 0.0232 0.9394 1 
Hybrid Weibull 0.0248 0.9309 2 
Gamma 0.0248 0.8799 3 
Rayleigh 0.0850 0.1892 5 
Inverse Gaussian 0.0633 0.5510 4 

Ouahigouya Weibull 0.0350 0.8629 1 
Hybrid Weibull 0.0352 0.8612 2 
Gamma 0.0352 0.7946 3 
Rayleigh 0.1287 -0.8587 5 
Inverse Gaussian 0.0951 -0.0150 4 

Po Weibull 0.0472 0.8101 3 
Hybrid Weibull 0.0460 0.8200 1 
Gamma 0.0460 0.6568 2 
Rayleigh 0.0908 0.2979 5 
Inverse Gaussian 0.0710 0.5702 4 
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Fig. 2. Observed and theoretical distribution of the different models at the study site 
 

distributions studied. The mean absolute error in 
estimating the power density using the 
distribution functions considered is also shown in 
the Table. According to the absolute mean error, 
the hybrid Weibull distribution is the most 
accurate and efficient one to model the wind 
speed frequency distribution for the sites of Bobo 

( 1.38d    ), Bogandé ( 6.16d   ), Boromo          

( 4.70d   ), Dori ( 6.74d   ), Fada                   

( 9.85d   ), Gaoua ( 11.29d   ), and Po              

( 11.29d   ). For the cities of Ouaga                  (
0.57d   ) and Ouahigouya ( 7.50d   ), the 

most appropriate corresponding distribution is 
that of Rayleigh. Finally, for the town of 

Dédougou ( 12.50d   ), the minimum error is 
observed with the Weibull distribution. We then 
conclude that the Hybrid Weibull distribution 
function has a minimum error in estimating the 
annual wind energy density at almost all study 
sites. 
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Fig. 3. Comparison of distribution models in terms of RMSE 
 

 
 

Fig. 4. Comparison of distribution models in terms of  
 

Table 4. Mean absolute error in power density estimation using the five distributions studied 
 

Station Distributions 
   

 Rank 

Bobo Weibull 35.88 32.99 8.76 3 
Hybrid Weibull 32.53 1.38 1 
Gamma 11.69 64.56 5 
Rayleigh 34.10 3.37 2 
Inverse Gaussian 17.21 47.82 4 

Bogandé Weibull 27.77 24.51 13.31 3 
Hybrid Weibull 23.00 6.16 1 
Gamma 7.21 70.58 5 
Rayleigh 27.21 11.00 2 
Inverse Gaussian 7.80 68.16 4 

Boromo Weibull 12.33 6.29 96.00 5 
Hybrid Weibull 5.99 4.70 1 
Gamma 1.53 75.61 2 
Rayleigh 11.94 89.78 4 
Inverse Gaussian 0.80 87.14 3 

Dédougou Weibull 32.19 36.79 12.50 1 
Hybrid Weibull 28.57 22.32 3 
Gamma 8.90 75.79 5 
Rayleigh 30.56 16.92 2 

2R

2( / )thP W m 2( / )obP W m ( )d 
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Station Distributions 
   

 Rank 

Inverse Gaussian 10.60 71.16 4 
Dori 
 

Weibull 9.46 5.38 75.82 3 
Hybrid Weibull 5.01 6.74 1 
Gamma 1.28 76.07 4 
Rayleigh 8.83 64.20 2 
Inverse Gaussian 0.74 86.17 5 

Fada Weibull 13.49 11.67 15.59 3 
Hybrid Weibull 10.52 9.85 1 
Gamma 3.19 72.66 4 
Rayleigh 13.51 15.74 2 
Inverse Gaussian 3.12 73.24 5 

Gaoua Weibull 25.45 18.52 37.37 3 
Hybrid Weibull 16.43 11.29 1 
Gamma 4.49 75.72 4 
Rayleigh 25.12 35.63 2 
Inverse Gaussian 3.34 81.91 5 

Ouaga Weibull 26.39 25.93 1.75 2 
Hybrid Weibull 24.30 6.28 3 
Gamma 8.08 68.82 5 
Rayleigh 25.78 0.57 1 
Inverse Gaussian 10.48 59.57 4 

Ouahigouya Weibull 24.81 22.16 11.95 3 
Hybrid Weibull 19.81 10.59 2 
Gamma 5.93 73.24 4 
Rayleigh 23.82 7.50 1 
Inverse Gaussian 5.78 73.88 5 

Po Weibull 13.66 11.09 23.09 3 
Hybrid Weibull 9.84 11.29 1 
Gamma 2.89 73.89 4 
Rayleigh 13.20 19.00 2 
Inverse Gaussian 2.56 76.93 5 

 
5. CONCLUSION 
   
Under- or overestimation of the wind energy 
potential of a given site negatively influences the 
economic rate of return of wind energy projects. 
This is caused by the uncertainty associated with 
the mathematical modelling of the wind speed 
frequency distribution. Indeed, it is common 
practice to model the wind speed distribution 
systematically using the Weibull function. 
However, this function is not always suitable for 
all wind regimes. Therefore, in this study, wind 
speed data in three-hourly time series format 
over the period from January 2006 to December 
2016 at ten sites in Burkina Faso are statistically 
analyzed and fitted by five candidate distribution 
functions (Weibull, Hybrid Weibull, Rayleigh, 
Gamma and inverse Gaussian). 
 

 Graphically, the Rayleigh distribution curve 
indicates a poor fit with the measurements 
at most sites. In order to make a scientific 
decision, two suitability tests (coefficient of 

determination and RMSE) were used to 
select the effective distribution that best fits 
the histogram of observations.  

 Use of the maximum likelihood method to 
compare the five distributions shows that 
the Weibull distribution is the most suitable 

one for the sites of Bobo (
2R =0.82), 

Dedougou (
2R =0.92), Ouaga (

2R =0.93) 

and Ouahigouya (
2R =0.86). On the other 

hand, for the sites of Bogandé (
2R =0.90), 

Fada (
2R =0.95), and Po (

2R =0.82), the 
hybrid weibull distribution is the most 
appropriate. As for the inverse Gaussian 
distribution, it is most suited to the sites of 

Boromo (
2R =0.77), Dori (

2R =0.74) and 

Gaoua (
2R =0.69).  

 In addition, the calculation of the mean 
absolute error between the annual wind 
power density estimated using theoretical 

2( / )thP W m 2( / )obP W m ( )d 
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distributions and the wind power density 
calculated using measurements was 
performed. It was found that the hybrid 
Weibull distribution has a minimum 
absolute error in the estimation of power 

density at the sites of Bobo ( 1.38d    ), 

Bogandé ( 6.16d   ), Boromo                   

( 4.70d   ), Dori ( 6.74d   ), Fada                      

( 9.85d   ), Gaoua ( 11.29d   ), Po                  

( 11.29d   ). For the cities of Ouaga             

( 0.57d   ) and Ouahigouya ( 7.50d  

), the most appropriate corresponding 
distribution is that of Rayleigh. Finally, for 

the town of Dédougou ( 12.50d   ), the 
minimum error is observed with the Weibull 
distribution. 

  
We then conclude that the Hybrid Weibull 
distribution function has a minimum error in 
estimating the annual wind power density at 
almost all study sites. Thus Hybrid Weibull 
distribution function is the mostsuitable 
distribution that models wind speed at almost all 
study sites. 
 
Due to the shortage of wind turbines in the 
regions of Burkina, the results of this study can 
provide useful information for the development of 
wind energy. 
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