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ABSTRACT 
 

The second leading reason of mortality worldwide is communicable diseases. The highly cost 
effective approach for disease prevention in case of communicable disease is vaccination. It is 
need of the hour to design and develop novel as well as safe vaccine delivery systems to 
safeguard against present incurable and emerging diseases. For various factors, the production of 
orally administered vaccines is superior to conventional injection-based formulations, including 
increased protection and compliance, and simplified processing and administration. In comparison, 
the oral route helps humoral and cellular immune responses to be activated at both systemic and 
mucosal sites to create larger and longer-lasting defence. This review addresses the reasoning for 
oral vaccines here including important biological and physicochemical implications for the design of 
oral vaccines for the next decade. 
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1. INTRODUCTION 
 
Vaccines have greatly decreased the problem of 
communicable diseases by decreasing deaths 
globally. Immunization is a cost-effective 
technique that by creating herd immunity, 
protects not only the vaccinated individuals, but 
also defend the community through the 
generation of herd immunity [1]. Vaccine 
production against a number of illnesses, 
including diphtheria, tetanus, polio, measles, 
mumps, rubella, hepatitis B, and meningitis, has 
decreased the resulting mortality by 97% to 99%. 
However, along with several active vaccine 
programmes, communicable diseases are the 
world's second most key cause of death, 
affecting children under 5 years of age and 
people in low-income countries 
disproportionately. In reality, infective agents are 
accountable for five of the top ten foremost 
reasons of death in low-income countries: lower 
respiratory infections (e.g. pneumonia), 
HIV/AIDS, diarrheal illness, malaria, and 
tuberculosis [2]. Although some of these viruses 
still lack the vaccination needed for disease 

avoidance, an estimated 20% of these deaths 
are caused by vaccine-preventable diseases, 
signifying that vaccine technologies and 
administration need to be considerably improved. 
After crossing one of the various defensive 
mucosal barriers of the body, maximum 
infections take place. An effective practise to 
evade infection at the point of interaction 
between microbes and the host would be the 
development of an immunologically strong 
mucosal barrier. The current vaccine technology 
strategies, however, usually address only 
pathogens that have already crossed the 
mucosal barrier [3]. Most appropriate vaccines 
are offered either by subcutaneous injection or 
intramuscular injection. As a universal rule, the 
resultant immune response is limited to systemic 
humoral immunity (e.g. production of antibodies) 
against the pathogen or toxin, with limited cellular 
immunity (e.g. T-cell-mediated) and only poor 
mucosal surface defence [4]. Vaccination on 
mucosal surfaces, on the other hand, effectively 
triggers mucosal antibodies (IgA) and cell-
mediated immune responses while also inducing 
a systemic antibody response (IgG). 

 

 
 

Fig. 1. History of vaccine development 
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2. CHALLENGES OF ORAL 
ADMINISTRATION 

 
The oral transmission of antigens needs to 
resolve several physicochemical and biological 
hurdles in the GI tract to prompt a vigorous 
immune response. Among them is the intestinal 
epithelium's biological barrier and its mucus 
secreting layers that aid to digest ingested 
nutrient absorption content and to guard the body 
from the incursion of pathogenic threats. The GI 
tract needs a very acidic environment in the 
intestine, a wide pH spectrum along the length of 
the GI tract, and the involvement of proteolyt
enzymes responsible for protein degradation in 
order to accomplish these activities
features can hinder with the distribution of fragile 
biomolecules that are extremely vulnerable to 
degradation and denaturation, such as antigenic 
proteins or peptides. In addition due to the 
residence time in the small intestine (3
where the bulk of absorption processes exist, 
there is a temporal restriction to the absorption of 
these formulations [6]. 
 

Additional challenge in the production of oral 
vaccines is that, compare to conventional 
parenteral immunizations, a higher dosage of 
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Fig. 2. Global vaccination coverage 
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The oral transmission of antigens needs to 
resolve several physicochemical and biological 
hurdles in the GI tract to prompt a vigorous 
immune response. Among them is the intestinal 
epithelium's biological barrier and its mucus 

digest ingested 
nutrient absorption content and to guard the body 
from the incursion of pathogenic threats. The GI 
tract needs a very acidic environment in the 
intestine, a wide pH spectrum along the length of 
the GI tract, and the involvement of proteolytic 
enzymes responsible for protein degradation in 
order to accomplish these activities [5]. These 
features can hinder with the distribution of fragile 
biomolecules that are extremely vulnerable to 
degradation and denaturation, such as antigenic 

peptides. In addition due to the 
residence time in the small intestine (3-4 h), 
where the bulk of absorption processes exist, 
there is a temporal restriction to the absorption of 

Additional challenge in the production of oral 
ines is that, compare to conventional 

parenteral immunizations, a higher dosage of 

antigen is essential to cause an immune 
response. The available formulations used as 
carriers are limited by this function as they must 
be able to bear the essential antigen
effectively [7]. Instead of prompting a defensive 
reaction, greater doses often increase the danger 
of causing resistance. A number of diseases are 
frequently introduced to the GI tract. If a vaccine 
does not prompt adequate risk signals, the body 
may recognise it as non-pathogenic and inhibit 
the immune response from being activated, 
ensuing in immune resistance rather than 
defence [8]. In the nature of oral vaccine carriers, 
it is also significant to use strong adjuvants in 
order to activate the immune system effectively
[9].

 

 
3. TYPES OF VACCINES 
 
Live attenuation of the early vaccines, signifying 
that they included a variant of the 
that was reduced or altered in the laboratory so 
as not to prompt substantial infection
attenuated formulations bear a resemblance to 
natural pathogens most closely, provoking 
forceful cellular and antibody responses that are 
likely to deliberate long-lived defensive immunity. 
Unfortunately, living, weakened vaccines could 
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also pose risks, mostly in immuno-compromised 
patients, such as infection, unregulated 
replication, and disease [11]. Furthermore, 
attenuated pathogens, though exceedingly 
unusual, have the capability to return to a 
pathogenic form and cause the disease. Such 
as, due to the threat of vaccine-associated 
paralytic poliomyelitis and the availability of a 
safer alternative in the form of an injected 
inactivated vaccine, the live oral poliovirus (OPV) 
vaccine has not been circulated in the United 
States since 2000 [12]. Genetic engineering 
progresses have reduced the irregularity of 
laboratory attenuation and improved the 
protection of live attenuated viruses in a number 
of ways, including genetic modification or 
removal required for replication [13]. Whole-cell 
vaccines that comprise of a disease-causing 
microbe inactivated by additives, sun, or 
radiation are a better substitute to live-attenuated 
vaccines. Inactivated vaccines can also prompt, 
but cannot replicate, an immune response. 
Therefore, these vaccines are superior and more 
stable than live vaccines, but they prompt a 
weaker immune response, typically requiring 
extra doses or booster shots in order to maintain 
safety [14]. Though the production of vaccines 
has historically focussed on either live or dead 
whole organism vaccines, the progress of next-
generation vaccines has started to concentrate 
on much improved and more cost-effective 
candidates for vaccines: subunit vaccines [15]. 
Subsequently they do not have any live 
components of the pathogen, subunit vaccines 
are considered the best option. They can be 
categorised into four main categories: protein-
based, conjugates, polysaccharides, and toxoids 
[16]. A specific and isolated protein which is 
introduced to the immune system as an antigen 
is used by protein-based subunit vaccines. It is 
likely to extract and refine these molecules from 
a cultured microbe or to yield them using 
recombinant DNA technology [17]. Proteins, 
though are delicate structures and are readily 
denatured and degraded by pH modifications or 
proteolytic enzyme presence. Polysaccharide 
vaccines bear a resemblance to infectious 
bacteria-associated polysaccharide capsules, 
thus producing an immune response [18]. They 
are not principally immunogenic, similar to 
protein subunit vaccines, and are therefore 
related to short-term immunological reactions, 
not long-term memory. Conjugate vaccines time 
and again prompt a reaction against the 
protective polysaccharide capsule of the 
pathogen; also, they contain, in addition to 
polysaccharides, a carrier protein to boost the 

production of long-term protective immunity [19]. 
Any of the protein carriers generally used 
comprise toxoids for diphtheria which tetanus, 
and are also generally used against bacterial 
infections. In conclusion, toxoid vaccines are 
used against diseases of which the main cause 
of disease, such as diphtheria and tetanus, is 
bacterial toxin. They are inactivated forms of the 
poisons and are both healthy and stable, thus 
[20]. On the other hand, for an effective immune 
response, the widely held toxoid vaccines need 
the use of adjuvants, such as aluminium or 
calcium salts [21]. The distinction between both 
subunit vaccines and inactivated immunizations 
is that they comprise selected antigenic sections 
of a pathogen desired to induce a defensive 
immune response [22]. These formulations have 
exceptional stability and protection profiles, but it 
is very time-consuming to find a sufficient 
combination of the aforementioned antigenic 
components to create a suitable immune 
response [23] .In comparison, subunit vaccines 
appear to be less immunogenic than their 
equivalents with whole cells. In order to reinforce 
the immune response by the addition of 
immunostimulatory molecules or the nature of 
antigen delivery mechanisms, recent research 
has focused on the use of adjuvants [24].  
 

4. LICENSED ORAL VACCINES 
 

4.1 Oral Polio Vaccine 
 

The first active mucosal vaccine created was the 
oral polio vaccine (OPV). OPV consists of a 
mixture of one of the three infectious serotypes 
of live attenuated poliovirus strains [25]. To yield 
safety via both humoral and mucosal immunity, 
three spaced doses are necessary. Serum 
antibodies block poliovirus from spreading to the 
nervous system, therefore saving patients from 
the paralysis of polio [26]. In addition, and 
precise to OPV, OPV induces a local SIgA 
immune response in the intestinal mucosa, which 
is the main site for the entry and replication of 
poliovirus, similar to the inactivated injectable 
polio vaccine (IPV) [27]. This local intestinal 
response is extremely positive in averting the 
spread of wild poliovirus person-to-person. 
Though a remarkably low but actual chance of 
reversion to neurovirulence exists with OPV 
administration, arising in approximately 1 of 
every 2.5 million cases [28]. The threat of 
contracting the disease from the wild-type 
pathogen was minor than that of acquiring polio 
from OPV after positive eradication of the 
disease by extensive vaccine campaigns. In 
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most developed countries, OPV has thus, been 
substituted by IPV [29]. 
 

4.2 Live Oral Typhoid Vaccine (Ty21a) 
 

Salmonella typhi, an infectious enteric bacterium 
generally consumed by infected food or drink, 
causes typhoid fever. Typhoid fever is too very 
rare in advanced nations, but still common in less 
developed areas where access to treated water 
sources and sanitation is generally missing [30]. 
An oral live attenuated Ty21a vaccine, formed 
through chemical mutagenesis of the Ty2S. 
Typhi strain, is one of the two approved typhoid 
fever vaccines. None of the vaccines offered are 
100 percent effective and the safety of Ty21a 
differs based on the dosage of the vaccine, the 
number of doses and the spacing between doses 
[31]. The formulation is presently offered as 
either a liquid suspension or an entero-coated 
capsule and is provided on alternating days in 
three or four doses. Seven days after the last 
injection, the vaccine confers protection, with up 
to 62 percent protection for a follow-up duration 
of seven years [32]. While Ty21a is linked with 
the progress of serum IgG, intestinal sIgA, as 
well as numerous cell-mediated immune 
responses such as T cell proliferation and Th1-
type cytokines, the degree to which this vaccine 
mediates defence by systemic immunity or gut 
mucosal immunity is anonymous [33]. However 
serum antibodies are certainly helping to attain S 
defence. New trials in Typhi seek to clarify the 
leading immune system in order to attain long-
term efficacy [34]. 

 

4.3 Cholera Vaccines 
 

Cholera is an enormously virulent and acute 
diarrheal disease spread through fecal 
contamination of food and water [35]. Of the 
many enteric pathogens related with diarrheal 
disease, V. cholera causes the most severe 
epidemic outbursts, most frequently related with 
natural disasters that interrupt access to clean 
water [36]. It remains endemic in regions with 
deprived hygiene in needy and overcrowded 
areas. Developed through ingestion of polluted 
food and water, the bacteria V. cholerae 
colonizes the epithelial lining of the gut, causing 
profuse watery diarrhea that can kill within hours 
if untreated [37]. For numerous years, the only 
vaccine presented was a killed full cell cholera 
vaccine given by injection, but safety was 
insufficient, short-lived, and related to painful 
side effects [38]. For general public health use, it 
was found unacceptable and has since been 
changed by two enhanced oral vaccines [39]. A 

recombinant cholera toxin B (CTB) subunit and 
inactivated whole cell V. cholera O1 called 
Dukoral® is the most frequently used, developed 
by Crucell (Leiden, The Netherlands) and 
delivered fourteen days apart in two doses [40]. 
The recombinant cholera toxin B vaccine offers 
safety against multiple serotypes, is safe and 
stable and for 2 years, offers approximately 65% 
safety against cholera, including substantial 
safety for herds. Local creation of both antitoxic 
and antibacterial SIgA antibodies in the gut 
mediates the protection. In addition, the CTB 
vaccine portion offers significant cross-protection 
against ETEC, which holds a heat-labile toxin 
that is structurally and functionally identical [41]. 
Though since Dukoral® is administered with a 
buffer solution that includes 150 mL of clean 
water for adults, in comparison to crisis areas 
where clean water is often scarce, it is mostly 
used for travellers [42]. An oral live cholera 
attenuated vaccine, CVD-10-HgR, having a 
genetically modified V. cholera O1 Inaba strain, 
is the second and current globally approved 
vaccine (VAXCHORA, PAXVAX, USA). It is a 
reformulation of the previous CVD 103-HgR 
vaccine (OROCHOL; MUTACHOL), which for 
economic reasons, was taken off the market [43]. 
It is available as a single dosage, but is currently 
only approved for adults 18-64 travelling to areas 
affected by cholera and is planned to be given at 
least 10 days prior to likely exposure to V. 
cholera [44]. 
 

4.4 Rotavirus 
 

The foremost cause of diarrheal mortality in 
babies and children under 5 years of age is 
rotavirus. The virus is a triple-layered particle 
displaying different forms of antigens [45]. The 
bulk of human rotavirus infections are triggered 
by five serotypes. A monovalent attenuated 
human rotavirus (RotaRix) and a pentavalent 
bovine-human rotavirus vaccine are now 
available in two oral vaccine formulations: 
(RotaTeq). While the composition differs, their 
potency and mode of action are similar [46]. Both 
are effective (N90 percent) in evading serious 
rotavirus gastroenteritis, but less effective (60-75 
percent) against moderate infections [47]. From a 
social viewpoint, in view of the need for less 
doses, and thus less storage capacity, as well as 
confirmed thermostability, RotaRix has an 
increased cost-effectiveness ratio [48].

 

 

4.5 Oral Adenovirus Vaccine 
 

Acute respiratory infection triggered by type 4 
and type 7 adenoviruses used to be the primary 
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cause of hospitalisation in the United States [49]. 
Medical symptoms, including high fever, cough, 
chest pressure, fatigue, and congestion lasting 3-
10 days, are like to the flu [50]. Oral 
administration permits for selective asymptomatic 
inflammation in the lower intestinal tract, while 
the upper respiratory tract offers immunity [51]. 
The presence of serotype-specific serum 
neutralising antibodies is reliable with defence, 
but there is no indication that the main source of 
protection is neutralising antibodies [52]. 
 
5. ORAL VACCINE STRATEGIES 
 
5.1 Polymeric / Particulate Vaccine 

Design 
 
For the production of subunit-based vaccines, 
polymeric microparticles (MPs) and nanoparticles 
(NPs) have been carefully studied [53]. The 
components of the proteins, DNA, and 
polysaccharide vaccine are fragile molecules that 
may be structurally degraded during transition 
through the gastrointestinal tract or the substrate 
of the mucosa, resulting in reduced bioactivity 
[54]. Entrapment or encapsulation within 
polymeric particles of the antigenic payload gives 
protection, while also evading dilution of antigen 
across the broad surface area of the GI tract [55]. 
Particles may have control over the release site 
and profile for better distribution of stable 
antigens, in addition to robust structural stability 
[56]. In addition, by passive or active targeting to 
stimulate cellular and humoral responses, NP 
carriers have exhibited the ability to successfully 
transmit an antigenic payload directly to 
phagocytic APCs [57]. Particulate delivery 
systems passively, merely by means of APC 
detection and internalisation, offer characteristics 
of adjuvant activity to weakly immunogenic 
subunit vaccines [58]. NPs, however, allow 
improved adjuvant strategies to be executed by 
co-delivery of immunomodulators or by 
modulation of surface properties for enhanced or 
targeted immune cell uptake [59]. In addition, 
both synthetic and natural materials with 
favourable physicochemical properties are 
diverse and are capable of reacting to 
physiological changes, making polymeric 
particles a flexible choice for the design of 
legitimate vaccines [60].  

 
5.2 Lipid-Based Vehicles 
 
Some of the most widely used vehicles for oral 
administration are lipid-based vaccine delivery 

carriers. These include liposomes, bilosomes, 
and ISCOMs, among others [61]. They are based 
on a distinct encapsulation using lipid bilayers of 
hydrophilic and lipophilic agents [62].

 

 
5.2.1 Liposomes 
 
Liposomes are spherical vesicles formed from 
cholesterol and other non-toxic lipids synthesised 
by one or more phospholipid bilayers [63]. Based 
on their structure (i.e. their scale, charge, and 
protein compatibility), the properties of these 
structures differ and can be improved by 
adjusting their manufacturing parameters [64]. 
This liposomal systems also provide the ability to 
distribute multiple active agents with dramatically 
different properties, as they can be mounted in 
different carrier compartments [65]. Specifically, 
in the inner layer of these vehicles, water-soluble 
molecules such as proteins, RNA, carbohydrates 
or peptides are encapsulated; meanwhile, 
lipophilic compounds may be found in the outer 
portion of the composition [66]. To target a wide 
range of virus and bacterial infections, a number 
of liposome-based vaccines for oral 
administration have previously been synthesised. 
For instance, a viral influenza A vaccine was 
developed using a DNA build vaccine 
encapsulated in cationic liposomes with a pcDNA 
3.1(+) plasmid [67]. In addition to increasing 
cytokine production, oral immunisation with this 
formulation has triggered humoral and cellular 
immune responses. Liposomes, including 
Salmonella Enteritidis, have also been used to 
eliminate bacterial infections [68]. Using a 
liposome-associated carrier with a recombinant 
SefA protein by Pang and collaborators, a 
vaccine was developed to prevent this disease 
[69]. This oral vaccine was able to produce 
defensive immunity in poultry, and after an oral 
competition with 2 × 10

6
 CFUs of live Salmonella 

Enteriditis, a substantial reduction in intestinal 
bacterial load was observed. Liposomes, 
including DNA, peptides, and proteins, have 
proven their ability to deliver different antigens. 
For instance, after three oral immunizations, 
encapsulation of a DNA-based antigen 
(Mycobacterium pcDNA3.1

+
/Ag85A) in liposomal 

formulations increased its presence in the 
epithelium, M cells, DCs and PPs inside the 
small intestine of C57BL/6 mice [70]. The 
system's ability to cause antigen-specific 
mucosal immunity has rendered this formulation 
a possible carrier of the vaccine [71]. In another 
analysis, the delivery inside the liposomes of 
antigenic peptides and CTL epitopes allowed 
their successful transport to APCs and improved 
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the host response to these antigens. 
Furthermore, these formulations' adjuvant 
capabilities have been tested using sample 
antigens (e.g. ovalbumin, bovine serum albumin) 
[72]. Such studies have shown that liposomes 
can load and release stable proteins efficiently. 
They can also evoke Th1/Th2 immunity, 
expressed by the generation of responses from 
mucosal and systemic antibodies [73]. Finally, to 
improve their effectiveness, these structures may 
also be adorned with targeting molecules (e.g. 
carbohydrates). Lectinized liposomes have been 
able to effectively attack M cells in the PPs in 
oral immunisation studies, resulting in elicited 
mucosal responses with high antibody titers [74]. 
In the production of oral vaccine delivery 
systems, the ability of conventional liposomal 
vehicles to evoke immune responses is 
important. These platforms, however, need to be 
more engineered to be stable in the GI tract 
under harsh conditions and to shield delicate 
antigens [75]. In addition, the encapsulation 
efficiency of proteins inside liposomes is highly 
dependent on the charge and size of the antigen, 
which may restrict their ability if strong immunity 
is needed to evoke large protein doses [76]. 
Overall, for vaccine delivery uses, liposomes 
have demonstrated promising properties. They 
need more analysis and optimization to lead to 
successful human vaccine formulations [77].  
 

5.2.2 Bilosomes 
 
Bilosomes are a different lipid-based carrier 
being investigated for oral immunisation. In their 
composition, these non-ionic surfactant vesicles 
have adjuvant functionalities and contain bile 
salts [78]. Monopalmitoyl glycerol (MPG), 
cholesterol (CH) and dicetyl phosphate (DCP) 
are usually synthesised with bilosomes and 
surfactants such as sodium deoxycholate (SDC) 
or sorbitan tristearate (STS) [79]. Bilosomes also 
have a bilayer of polar and non-polar ends, 
similar to liposomes, allowing vaccine 
components with substantially different 
properties to be combined [80]. Standard 
liposomal vesicles may be damaged by bile salts, 
however, if vesicles are fabricated in the 
presence of bile sales, such as bilosomes, they 
are no longer affected by their activity and 
remain intact [81]. These mechanisms are 
capable of enhancing humoral and cellular 
immune responses, and bile salt incorporation 
helps the cargo to be shielded from the harsh 
environment of the GI tract [82]. The increased 
stability that they can impart on fragile antigens is 
one of the key benefits of bilosomal formulations. 

In previous research, a number of fragile 
antigens, including tetanus toxoid (TT), 
A/Panama (influenza A immunogen), diphtheria 
toxoid, Bac-VP1 toxoid, have been shown to 
capture and stabilise bilosomes (hand, foot and 
mouth disease vaccine candidate) [83]. 
Additionally, bilosome adjuvant and drug release 
experiments were performed using model 
antigens such as bovine serum albumin (BSA) 
and subunit B cholera toxin [84]. Using different 
disease models, their immunogenic capacities 
have also been explored. Previously, systemic 
and local immunity, including in the mucosa, was 
developed by mannosylated bilosomes targeting 
DCs for oral immunisation against the hepatitis B 
virus [85]. The development of soluble 
immunoglobulin A at both local and distal GI tract 
sites was induced by the use of these 
formulations. High antibody titers and cellular 
responses were also elicited from a separate 
series of trials carried out using a subunit 
influenza vaccine in an orally administered 
formulation [86]. Specifically, responses to Th1 
and Th2 were successfully developed. These 
findings are particularly promising, as these 
mechanisms have shown the ability to stimulate 
healthy mucosal and systemic immunity [87]. 
Despite this, it is nevertheless important to 
further research their capacity to impart long-
term immunity and defence against lethal 
challenges [88]. As outlined here, the above 
advantages offered to multiple antigens due to 
bilosomal trapping make this method a viable 
oral immunisation vaccine delivery tool. The next 
step in the production of bilosomal oral vaccines 
is further evaluation using clinical trials [89].  
 

5.2.3 ISCOMs 
 
Immune-stimulating complexes (ISCOMs) are 
liposomes of the second generation, known as 
both a transporter and an immunostimulant for 
the delivery of vaccines [90]. Synthesized with 
colloidal saponin (often derived from the Quillaja 
saponaria tree by QuilA), cholesterol and other 
phospholipids (usually phosphatidylethanolamine 
or phosphatidylcholine), these self-adjuvant 
nano-sized vectors (~40 nm) are arranged into 
open-caged frameworks [91]. To promote 
vaccines against certain infections, these 
vehicles have been used to capture bacterial and 
viral envelope proteins [92]. In the presence of a 
non-ionic detergent that is withdrawn after 
synthesis, classical ISCOMs are self-assembling 
structures manufactured. It has been 
demonstrated that these formulations have a 
wide variety of uses, adding antigens to deter 
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infections with herpes simplex virus 1, hepatitis 
B, respiratory syncytial virus, Escherichia coli, 
Brucella abortus, and Plasmodium falciparum 
[93]. In multiple animal models, ISCOM-based 
vaccines have proved to be highly immunogenic, 
inducing healthy humoral and cellular responses 
[94]. Components of both the innate and 
adaptive immune systems are interested in the 
properties of this mechanism. This function 
renders this platform a highly attractive 
implementation technique, although its complex 
modes of operation remain to be completely 
clarified [95]. However, elicitation of mucosal 
immunity (i.e. secretory IgA) to prevent enteric 
infections is also essential for oral applications. 
To maximise the adjuvant properties of this 
platform, the production of ISCOM-based 
vaccines needs further evaluation in pre-clinical 
studies [96].

 

 

5.3 Adenoviral Vectors 
 
Traditional vaccinations is focused around the 
usage of killed or attenuated pathogens, however 
as previously mentioned, owing to the possible 
reversal of their pathogenicity, there are dangers 
of immunising susceptible communities of those 
platforms [97]. However, with advancements in 
genetic engineering and molecular virology, 
without their adverse side effects, there are 
several alternatives to the use of such microbial 
systems [98]. Adenoviruses are double-stranded 
DNA viruses that are species-specific that have 
distinct serotypes with a ~40 kb genome [99]. 
Although this platform was originally devised for 
gene delivery, it became less desirable for 
clinical use due to its highly immunogenic nature 
[100]. 

 
However, they have become fascinating 
possibilities as vaccine delivery carriers, based 
on the advancement and optimization in the 
synthesis of adenoviral vectors [101]. The 
adenoviral genome is well studied and can be 
easily modified, allowing nonpathogenic vectors 
to be synthesised [102]. Another benefit of these 
mechanisms is that most of these viruses only 
cause minor illnesses in immunocompetent 
human adults in their original form [103]. In order 
to nullify their replication process, these 
mechanisms may also be changed, further 
reducing their ability to infect a host. The use of 
adenoviral vectors as vaccine delivery 
mechanisms for the treatment of viral diseases 
has been motivated by the previously described 
features [104]. Adenoviral vector vaccines have 
been used to target a wide variety of some of the 

most difficult pathogens, including HIV, 
pneumonia, rabies, botulism, dengue, SARS, 
and Ebola [105]. They can develop vigorous 
immune responses, both cellular and humoral. It 
has been shown that oral immunisation with the 
most common adenoviral vector vaccine (AdHu5) 
induces potent CD8

+
 T cell responses and 

antibody responses, but does not include CD4+ T 
cell responses [106]. The multiple isotypes 
generated by such vectors (e.g. IgG2a, IgG1) 
suggest the elicitation of a Th1/Th2 response, 
but it is mostly distorted. In addition, by 
expressing pathogen-associated molecular 
patterns (PAMPs) on their surface, adenoviral 
vectors stimulate innate immune pathways, 
inducing the secretion of pro-inflammatory 
cytokines, activation of complements, and 
differentiation of APCs [107]. During the creation 
of novel delivery vehicles, one of the essential 
factors is their potential to elicit strong responses 
in specific clinical implementation models [108]. 
These technologies have been used in various 
animal models for the administration of vaccines, 
including rats, sheep, non-human primates and, 
most notably, in human clinical trials [109]. 
Adenoviral vectors provide an alternative to killed 
or attenuated vaccines by taking advantage of 
their immunogenic properties, and their further 
use and optimization remains a valuable tool for 
distribution vehicles that imitate pathogenicity 
[110].  
 

6. APPROACHES TO ENHANCE ORAL 
VACCINATION 

 
Advance of targeting approaches may lead to 
more balanced oral vaccine design being 
developed. To attain passive targeting of 
preferred cells, the physicochemical 
characteristics of antigen delivery systems, 
including height, form, surface charge, and 
hydrophobicity, can be modified. Active targeting 
systems for more specifically direct particulate 
delivery systems have, however, been examined, 
thus theoretically reducing the dose needed to 
evoke an immune response. Using a range of 
ligands, including bacterially derived moieties, 
lectins, PAMPs, and antibodies, receptors on 
intestinal epithelial cells, M cells and APCs have 
all been explored to target vaccine distribution.  
 

6.1 M Cell Targeting 
 
M cells are a vital system of particle transfer from 
the intestinal lumen into the GALT. These 
advanced transcytotic cells internalise and 
transfer particulate matter (e.g. bacteria, viruses) 
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to the underlying Peyer's Patches effectively and 
are thus highly attractive oral vaccine design 
goals [111]. M cells express special receptors for 
carbohydrates that provide selective targets for 
the delivery of mucosal vaccines. Lectins, made 
up of proteins and glycoproteins that can 
attached reversibly to particular carbohydrate 
residues, are among the highly investigated 
bioadhesives [112]. The alpha-L-fucose occurs 
typically expressed on M cells in both Ulex 
europaeus agglutinin-1 (UEA-1) and Aleuria 
auranitia target. In comparison to untargeted 
particles, oral immunisation of the surface of 
particles adorned with any lectin results in 
substantially greater SIgA [113]. In addition, 
enhanced cellular immunity was also shown by 
these particles, shown by large increases in Th1-
cytokines IL-2 and IFN-γ. These results show the 
ability to boost mucosal immune response 
through lectin-targeted strategies [114]. It is also 
to be remembered, though, that certain lectins 
are poisonous and can be potentially 
immunogenic. In the use of lectins as mucosal 
adjuvants, the immunostimulatory potential could 
be useful, but it also presents the risk of eliciting 
a reaction against the targeting molecule and 
finally avoiding uptake [115]. For selective 
transmission, other protein receptors expressed 
on M cells have been exploited. RGD, for 
example, is a ubiquitous peptide for cellular 
binding, but it has also been used to target M 
cell-mediated transport due to overexpression of 
the β1 integrin on the apical side of M cells, 
increasing humoral response with decreased 
antigen doses [116]. Claudin 4 is a strongly 
expressed close junction transmembrane protein 
in M cells which can be targeted to mediate 
improved SIgA response with surface-conjugated 
peptides. Additionally, with a novel monoclonal 
antibody (NKM 16-2-4) that separated M cells 
from goblet cells for a highly effective vaccine 
capable of defending against lethal challenge, 
elucidation of markers unique to M cells could 
enable the production of antibody-mediated 
targeting [117]. In conclusion, techniques ranging 
from bacterial adhesins and toxins to viral 
proteins have been borrowed from enteric 
pathogens, which target M cells to achieve host 
entry. Glycoprotein 2 (GP2) is a M cell receptor 
that interacts with FimH, an external membrane 
portion associated with type I piliated bacteria 
expressed in humans and mice (E. coli, Yersinia, 
Salmonella) [118]. A method to hijack M-cell-
mediated bacterial transcytosis and subsequent 
activation of mucosal immune response may be 
represented by FimH or other GP2 ligands [119]. 
The β1 integrin also binds to Yersinia. Invasion 

protein conjugation, and more recently, 
recombinant bacterial strains expressing the 
invasion of Yersinia to target M cells have been 
investigated [120]. Although M cell targeting 
strategies in animal models have been shown to 
be successful, challenges remain, including 
finding M cell target receptors that will convert 
from mice to humans, as well as ensuring that 
immunity is mediated instead of tolerance [121]. 
Using an in vitro M cell culture model consisting 
of Caco-2 human colon adenocarcinoma cells 
and Raji B human cell line, and later with the 
inclusion of HT29-MTX mucus secreting goblet 
cells, work is being conducted to better 
understand M cell biology [122]. This model has 
the ability to elucidate the antigen transport 
pathways through M cells, speed up the 
discovery of particular receptors for M cells and 
improve the design of rational oral vaccines 
[123]. 
 

6.2 Next Generation Adjuvants 
 

Due to their distinct relationship with lymphoid 
tissues, M cells are such promising candidates 
for the design of oral vaccines. M cells, however, 
constitute b5 per cent of the FAE [124]. In 
addition, due to a very mutable proportion and 
phenotype of organisms, assessment of targeting 
strategies can be made enormously difficult in 
vivo [125]. Thus, a different approach to M-cell 
targeting is to target receptors expressed on 
normal gut epithelial cells. For example, a 
number of lectins are also expressed by 
epithelial cells and can be used to rise 
transepithelial transport [126]. For oral drug 
delivery, ligands such as wheat germ agglutinin 
(WGA) that targets N-acetyl-D-glucosamine and 
sialic acid residues expressed throughout the GI 
tract by enterocytes have been well considered 
[127]. Pattern recognition receptors (PRRs) are 
frequently expressed on different types of cells, 
including epithelial cells which APCs, and identify 
molecular patterns associated with 
microorganisms (MAMPs) to strengthen 
microorganism phagocytosis [128]. Therefore, by 
inducing key innate immune signals, PRR 
ligands possess innate adjuvant properties. TLR 
agonists comprise the majority of PRR ligands 
used in oral vaccine production as supplemental 
adjuvants or targeting moieties, most of which 
are derived from pathogens [129]. Co-delivery of 
toll-like receptor agonists has been shown to 
effectively boost transport through intestinal 
lumen, particularly TLR-2 and TLR-4. A common 
factor in bacterial and viral DNA that is 
recognised by TLR9 and has good 
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immunomodulatory properties is CpG 
oligodeoxy-nucleotides (ODN) [130]. TLR5, 
which is expressed by epithelial cells, B cells, 
and dendritic cells among others, as well as a 
nod-like receptor (NLRC4) to potentially enable 
two PRR systems to increase immune response, 
is recognised by flagellin, a large bacteria-
associated protein [131]. Effective humoral 
reaction to a model antigen, as well as 
maturation of intestinal DCs and activation of 
helper T cell response in vivo, have been shown 
by flagellin loaded particles. LPS is another 
endotoxin derived from bacteria that functions as 
TLR4 agnostic and can be encapsulated or 
immobilised on particle surfaces, resulting in 
preferential DC uptake and high humoral and 
cellular immunity production. For vaccine 
formulation, though, the intrinsic toxicity 
associated with LPS may be troublesome [132]. 
MPLA is a Salmonella lipid A derivative and an 
alternative TLR4 agonist that is considered 
better, but also less effective, than LPS. 
Likewise, Vibrio Cholerae's cholera toxin (CT) 
and ETEC's heat-labile enterotoxin (LT) are two 
of the most promising mucosal adjuvants derived 
from bacteria, but restricted by the possible 
problems involved with the use of native toxins 
[133]. Both consist of toxicity-mediating 
enzymatically active A subunits and cell-
penetrating B subunits[134]. The derivation of 
toxin mutants that either remove or decrease the 
toxicity of the A subunits while still having 
mucosal adjuvant capability has been devoted to 
considerable work [135].  
 

7. FUTURE DIRECTIONS 
 

Cautious design of delivery vehicles and addition 
of molecules that can potentiate their outcome to 
arouse robust and stable immune responses are 
desirable to produce actual oral vaccines using 
subunit antigens. There are some advantages of 
using the oral route to improve the efficacy of 
vaccination, as specified in this study, but there 
are problems, including the safety of these 
delicate proteins, their release and the adjuvant 
potential of their carriers. In this work, the 
features of some of these approaches were 
briefly stated, but there are still options that 
should be discussed in order to attain optimum 
oral vaccine systems. Although the GI system's 
physiological and biological structure has been 
broadly documented, apprehensions remain 
unanswered about biomaterial interactions with 
the GALT. A number of tests using other 
mucosal routes have revealed that there is a 
focus on long-term protective immunity between 

prolonged immunogen presentation and 
development. The GI tract poses a harder 
challenge due to its design and function, as this 
can instead persuade tolerance. In order to help 
in the identification of biomaterial candidates to 
be used as effective delivery mechanisms, a 
deeper understanding of the dosage and antigen 
release kinetics well suited for orally 
administered vaccines is necessary. It has been 
revealed that differences in the immunity 
produced by oral vaccines depend on the diet 
and health of the patient's GI system. Tropical 
enteropathy, in particular, may prompt childhood 
malnutrition, intestinal absorption, and 
inflammatory disorders that reduces the efficacy 
of oral immunisation. In these formulas, the 
existence of such chemicals, such as co-factors 
(i.e. retinoic acid), will improve the vaccinated 
individual's answer. A substantial component of 
oral immunizations will be the presence of these 
nutrients, particularly for their use in low-income 
countries. The conclusive purpose of vaccines is 
to yield defensive immunity. There are a myriad 
of adjuvant/carrier structures that are presently 
being investigated for this use, as presented in 
this study. In addition, biomolecules that may 
target or improve their effectiveness include next-
generation vaccines. Despite this, the only 
approved drugs for these uses in the US are live 
and attenuated vaccines. The combination of two 
or three of these methods will increase their 
individual abilities in order to                                 
provide pathogen-mimicking abilities and 
provoke comparable responses to microbial 
infections. Gathering these systems would make 
it easier to take benefit of their strengths if they 
function in tandem, while mitigating their 
weaknesses. 

 
8. CONCLUSION 
 
Since its initiation, vaccine technology has been 
recurrently progressive. Among extra things, 
progresses in genetic and metabolic engineering 
have simplified the development of novel 
molecules that are stable and can yield      
immune responses. In order to                                              
design active delivery vehicles for certain 
antigens, it is time for the biomaterial sector to 
catch up with physico-chemical and biological 
tools. In the production of oral subunit vaccines 
for mucosal diseases, the design and application 
of these carriers, which may include immune 
potentiators, mucus-penetrating techniques, 
adjuvants and other methods, would definitely 
assist.  
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