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Abstract: Mesenchymal stem cells (MSCs) can be harvested from different sites in the oral cavity,
representing a reservoir of cells useful for regenerative purposes. As direct comparisons between at
least two types of MSCs deriving from the same patient are surprisingly rare in scientific literature,
we isolated and investigated the osteoinductive potential of dental pulp stem cells (DPSCs) and
buccal fat pad stem cells (BFPSCs). MSCs were isolated from the third molar dental pulp and buccal
fat pads of 12 patients. The number of viable cells was quantified through manual count. Proliferation
and osteodifferentiation assays, flow cytometry analysis of cell phenotypes, and osteocalcin release
in vitro were performed. The isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%)
and 3 out of 12 (25%) of retrieved samples, respectively. The yield of cells expressing typical stem
cell markers and the level of proliferation were higher in BFPSCs than in DPSCs. Both BFP-SCs and
DPSCs differentiated into osteoblast-like cells and were able to release a mineralized matrix. The
release of osteocalcin, albeit greater for BFPSCs, did not show any significant difference between
BFPSCs and DPSCs. The yield of MSCs depends on their site of origin as well as on the protocol
adopted for their isolation. Our data show that BFP is a valuable source for the derivation of MSCs
that can be used for regenerative treatments.

Keywords: mesenchymal stem cells (MSC); dental pulp stem cells (DPSCs); buccal fat pad stem cells
(BFPSCs); oral cavity; regenerative medicine; tissue engineering

1. Introduction

Human mesenchymal stem cells (MSCs) are the fundament of any tissue engineering
approach aiming at regenerating mineralized tissues [1]. Historically, one of the first sites
to derive MSCs has been bone marrow, but extraction is hindered by difficult accessibility
and a frequently painful procedure [2]. Alternative sources of MSCs have been discovered,
such as adipose tissue and dental pulp (DP), which can be easily and conspicuously
harvested [3]. Adipose-derived stem cells (ASCs) are a plastic-adherent [4], possess a
multipotent cell population attainable during liposuction, and rely on an impressive corpus
of supporting research published since 2001 [5] reporting on their capability to differentiate
into different tissues, such as bone and cartilage [6–8]. Likewise, ASCs can sustain the
repair of large bone defects in vivo and have been tested in clinical studies with promising
outcomes [9–11]. Extracted teeth have become an interesting source of MSCs since the first
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isolation of dental pulp stem cells (DPSCs) by Gronthos et al. in 2000 [3]. DPSCs have been
proven able to promote bone regeneration at every level [1,12]. In vitro, DPSCs show high
proliferation activity and are capable of osteogenic commitment [12,13]. These cells have
consistently been reported to promote bone regeneration after in vivo transplantation [13].
Subsequently, stem cells were also isolated from the pulp of exfoliating deciduous teeth
(SHED) [14,15], the periodontal ligament of permanent teeth (PDLSC) [16], and the apical
papilla [17].

Recently, the buccal fat pad (BFP), usually called Bichat’s fat pad, emerged as a novel
possible source of stem cells, known as buccal fat pad stem cells (BFPSCs). Indeed, studies
reported on the successful repair of bone defects in the jaws using these cells as a pellet [18],
or in combination with inorganic bovine bone mineral [19], enabling new protocols.

In this work, we exploit a particular surgical procedure in which maxillary wisdom
teeth are extracted while avoiding possible oro-nasal communication. Thus, both the
dental pulp and the buccal fat pad of the same patients were harvested, allowing us to
isolate and characterize the DPSCs and BFPSCs. The fact that these two cell populations
derived from the same patients allowed a direct comparison that is, to our knowledge,
as unprecedented as it is useful. The objective of the present study was to assess which
was the most promising source of mesenchymal stem cells between DPSCs and BFPSCs
based on the yield of viable cells obtained and their osteodifferentiation potential. The null
hypothesis was that there was no difference between the cell populations.

2. Materials and Methods
2.1. Patients and Ethics Issues

From January to May 2020, patients requiring the extraction of bone-included upper
wisdom teeth and a subsequent flap to prevent oro-antral communication were referred to
the Oral Surgery department of the Dental School of the University of Turin. Complete
medical history, panoramic radiograms (OPTs), and cone–beam computed tomography
of each patient were assessed. Cells from both the permanent teeth and the buccal fat
pad were obtained from 12 clinically healthy patients (7 males and 5 females, mean age
24 ± 3 years, as reported in Table 1). As reported elsewhere [20], exclusion criteria were
the following: “systemic or local disease or condition (hematologic diseases, uncontrolled
diabetes, serious coagulopathies, history of intravenous therapy with bisphosphonates,
and/or diseases of the immune system) possibly precluding oral surgical intervention;
immunosuppression; HIV+, HCV+, HBV+, TBC+, corticosteroid treatment, pregnancy,
radiotherapy to the head or neck region within 12 months before surgery.”

Table 1. Gender, age and site of the grafts.

Patient Gender Age Tooth Site Buccal Fat Pad (BFP) Site

1 M 20 18 R

2 F 26 28 L

3 F 23 28 L

4 F 27 28 L

5 M 22 18 R

6 M 30 18 R

7 F 21 28 L

8 M 27 18 R

9 M 26 28 L

10 M 24 18 R

11 F 25 18 R

12 M 22 28 L
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In this study, all clinical and laboratory procedures were approved by the Ethics
Committee of the Hospital Città della Scienza e della Salute of Turin (approval number:
1753/2019, date 10/3/2019), in accordance with the 1964 Helsinki Declaration and its later
amendments. Patients’ sensitive data were stored according to the EU law ensuring the
full respect of privacy after receiving written informed consent.

2.2. Cell Isolation and Culture
2.2.1. DPSCs

To prevent microbial contamination, teeth were rinsed quickly in a 5% sodium
hypochlorite solution in water, then three times in Hank’s Balanced Salt Solution, and
finally they were split using bone forceps. The DP tissue was minced and digested in a
mixture of 3 mg/mL type I collagenase (Gibco/Invitrogen, Carlsbad, CA, USA), at 37 ◦C
for 40 min. To discard extracellular debris, cells were filtered through a 70 µm cell strainer
(Falcon; BD Labware, Franklin Lakes, NC, USA), then they were centrifuged and plated
in a 35 mm dish containing alpha-modified Eagle’s medium (Gibco/Invitrogen, Carlsbad,
CA, USA) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, Milan, Italy),
50 U/mL penicillin, 50µg/mL streptomycin (Gibco/Invitrogen, Carlsbad, CA, USA) and
incubated at 37 ◦C in a 5% CO2 incubator.

2.2.2. BFPSCs

The fat was manipulated as reported elsewhere [21]. The subcutaneous adipose tissue
harvested from the buccal fat pad was enzymatically digested by 0.075% type I collagenase
(30 min at 37 ◦C). The stromal vascular fraction rich in BFPSCs was isolated by centrifu-
gation at 1200 g for 10 min, then plated in Dulbecco’s modified Eagle’s medium (DMEM;
Sigma-Aldrich, Milan, Italy), and supplemented with 10% fetal bovine serum (FBS),
50 U/mL penicillin, 50 µg/mL streptomycin, and 2 mM L-glutamine (Sigma-Aldrich).

2.3. Success Rate of Isolation of DPSCs and BFPSCs

According to the protocol described by Nakajima et al. [22], successful isolation was
defined when the cell culture reached the third passage (P3) without any contamination.
Cells were observed daily under an optical microscope until the day when cell adhesion
was observed, and colonies were formed.

2.4. Cell Number and Morphology Evaluation

The number of viable cells was quantified through manual count. Briefly, 50 µL of the
sample was mixed with 50 µL of 0.4% trypan blue by gently pipetting, and then 10 µL of
the mix was loaded into each chamber of a Bürker chamber. Counts were performed in
triplicate by using a 10X objective. As described elsewhere [23], cells were seeded at a con-
centration of 5000 cells/well in a 24-well plate, for 1 day. After fixing in 4% paraformalde-
hyde in phosphate buffer saline (PBS), cells were stained with Alexa488-Phalloidin and
diamidino-2-phenylindole (DAPI, Life Technologies, Milan, Italy) to mark the actin network
and nuclei, respectively. Images were acquired with a Nikon Eclipse Ti-E microscope using
a Nikon Plan 20×/0,10 (Nikon Instruments, Amsterdam, Netherlands) [24]. Quantitative
morphometric characterization was accomplished using MORPHEUS, a Fiji/ImageJ2 plu-
gin designed for the unbiased and reproducible analysis of cell morphometry from images
acquired by fluorescence microscopy [25]. First, MORPHEUS segmented and automatically
recognized most of the isolated cells present in each input image. Then, the algorithm
evaluated the morphometry of the selected cells by means of 12 different shape descriptors
(i.e., area, perimeter, best fitting ellipse (BFE) major axis, BFE minor axis, BFE aspect ratio,
BFE angle, circularity, roundness, solidity, Feret’s diameter, Feret’s angle, and minimum
caliper diameter) allowing for a multivariate statistical approach.
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2.5. Proliferation Assay

To evaluate their proliferation, the BFPSCs and DPSCs were seeded at a density of
1000 cells/well in 96-well culture dishes, and viability was assessed by CellTiter-Glo®

(Promega, Milan, Italy) according to the manufacturer’s protocol at 24, 48, and 72 h. The
CellTiter-Glo® Luminescent Cell Viability Assay is a homogeneous method for determining
the number of viable cells in a culture based on quantitation of adenosine triphosphate
(ATP) as a marker of metabolically active cells. The amount of ATP is directly proportional
to the number of viable cells in culture, and for this reason this assay can be used as an
indicator of cell proliferation (as reported by the manufacturer).

2.6. Osteodifferentiation Assays

To assess osteogenic differentiation, cells were cultured in osteogenic medium (OM),
constituted by alpha-modified Eagle’s medium supplemented with 50 µg/mL ascorbic
acid, 10–8 M dexamethasone, and 10 mM beta-glycerophosphate (Sigma-Aldrich). After
14 days of culture, the expression of alkaline phosphatase (ALP) was evaluated through
IHC staining (ALP kit, supplied by Sigma-Aldrich). The formation of mineralized nodules
was assessed by Von Kossa staining, after 8 weeks of culture.

2.7. Flow Cytometry Analysis of DPSCs and BFPSCs Phenotypes

The expression of typical MSCs markers was analyzed by flow cytometry. In de-
tail, cells were identified as CD105-, CD44-, CD73- and CD90-positive, or CD45-, and
CD3-negative.

Standard labeling protocol was performed with the following fluorochrome-conjugated
antibodies and isotypic controls: human CD105 PE (Invitrogen, Camarillo, CA, USA), CD73
FITC (kindly provided by Prof. Malavasi, University of Turin), CD44 FITC, CD45 PerCP,
CD3 APC, IgG1 PE and IgG2a PerCP (Miltenyi Biotech, Bergisch Gladbach, Germany),
and FITC-conjugated IgG1 (Immunostep). As a further control, unstained cells were also
examined. About 105 events/sample were used for capture with CellQuest software. Data
were analyzed with FlowLogic software (Miltenyi Biotech).

2.8. Osteocalcin Evaluation

Following the manufacturer’s protocol, Osteocalcin (OCN) was measured in the
growth medium (GM) and osteogenic medium (OM) media by means of an Osteocalcin
Elisa kit (KAQ1381 Invitrogen Corporation, Camarillo, CA, USA), after 21 days of culture.

2.9. RNA Extraction and Real-Time PCR Analysis

Total RNA was extracted using a PureLink RNA Mini Kit (Ambion, Life Technologies
Italy, Milan, Italy). For the quantitative real-time polymerase chain reaction (qRT-PCR), 1 µg
total RNA was transcribed into complementary DNA by MultiScribe® Reverse Transcrip-
tase (High-Capacity cDNA Reverse Transcription Kit, Thermo Fisher Scientific, Waltham,
MA, USA), and the PCR analysis was then assessed using TaqMan probes from Roche.
Transcript abundance, normalized to 18 s mRNA expression, was expressed as a fold in-
crease over a calibrator sample. The qRT-PCR was performed on a 7900HT Fast Real-Time
PCR System (Applied Biosystems, Life Technologies Italy, Milan, Italy). Specific primers
and probes were designed using the Universal Probe Library—Assay Design Center Roche
Life Science software.e (www.lifescience.roche.com, last accessed date: 12/28/2021).

2.10. Statistical Analysis

The Mann–Whitney U test was performed to compare the age at extraction and the
period from the plated day until the day of the confirmation of cells between the success
and failure groups; p < 0.05 and p < 0.01 were considered statistically significant. Hotelling’s
T2 test was used as a multivariate hypothesis test in the quantitative morphometric analysis
(BFPSC vs. DPSC comparison).

www.lifescience.roche.com
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3. Results
3.1. Success Rates in Isolating MSCs from BFP and DP

Five days after culture, both the BFPSCs and DPSCs adhered to the cell culture dishes,
and their isolation was evident from an optical microscope observation of cell adhesion
and formation of colonies. Cell adhesion was not observed in cases where stem cells were
not isolated, even 10 days after seeding. Cells were cultured in vitro for 3 passages, and the
isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%) and 3 out of 12 (25%) of
the retrieved samples, respectively. As reported in Figure 1A, the success rate in isolating
stem cells was higher for BFP than for DP.
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Figure 1. Mesenchymal stem cells (MSC) isolation from buccal fat pad stem cells (BFPSCs) and dental pulp stem cells
(DPSCs). (A) the success rate in isolating stem cells was higher for BFPSCs than for DPSCs. (B) The number of viable cells
was significantly reduced in cultures of DPSCs than of BFPSCs. (C) The proliferation of BFPSCs and DPSCs was reported
at 12, 48, and 72 h of culture. A significant difference was evident at 72 h The symbol (*) indicates a significant difference
between BFPSC and DPSC, considering a p-value < 0.05.

The growth of BFPSCs and DPSCs was assessed at the first passage, showing a
significantly reduced number of viable cells in cultures of DP compared to BFP, as shown
in Figure 1B. The proliferation of BFPSCs and DPSCs was comparable in the first 48 h of
culture, whereas the results were significantly lower for DPSCs than for BFPSCs after 72 h
of culture (Figure 1C). These data suggest that BFP is a valuable source from which to
derive MSCs.

3.2. BFPSCs Show a MSC Immunophenotype

BFPSCs (Figure 2A1) showed the typical spindle-shaped morphology of MSCs, while
DPSCs (Figure 2A2) showed a more polygonal shape. An automated morphometric
analysis allowed for a quantitative evaluation of such a difference. Specifically, 12 shape
descriptors were evaluated over n = 96 BFPSCs and n = 90 DPSCs, and the resulting
data were subjected to principal component (PC) analysis for dimensionality reduction.
As expected, the two groups of cells were clearly separated when represented in the
space of the first two or three PCs (Figure 2B,C). Accordingly, a multivariate Hotelling’s
T2 test comparing the two cell types across all descriptors returned an extremely low
p-value (<10−50) confirming the sharp separation. The marginal analysis of the individual
descriptors (Figure 2D,E) showed that size and edge smoothness represented the most
significant differences between the two experimental groups. In particular, the BFPSCs
exhibited areas, perimeters, and Feret diameters significantly larger than the DPSCs did,
while circularity and solidity values were significantly larger within the DPSC pool.
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Figure 2. Morphological characterization of BFPSCs (A1) and DPSCs (A2). Staining with Alexa488-Phalloidin and DAPI
showing the actin network and nuclei, respectively, of BFPSCs and DPSCs. Magnification 200×. (B) Two sets of cells
consisting of n = 96 BFPSCs (from 24 independent pictures) and n = 90 DPSCs (from 15 independent pictures) were used for
quantitative morphometry assessment. Twelve shape descriptors were computed for each cell and principal component (PC)
analysis allowed representing the two experimental groups in the reduced space of the first three PCs (together accounting
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for more than 86% of the total dataset variability). (C) Biplot representing the two groups of cells in the space of the first two
PCs together with the projections of the 12 original axes (one for each shape descriptor considered). (D) For a comparative
evaluation of the most influential features, mean ± standard error of measurement (SEm) was evaluated for the two groups
separately, starting with the z-scores of each descriptor (i.e., after distribution standardization). (E) For each single shape
descriptor, the related effect size (Cohen’s d) and the p-value resulting from the marginal univariate t-test are reported.

A flow cytometry analysis confirmed the different morphology of BFPSCs and DPSCs
by examination of their physical parameters (forward- and side-scatter) (Figure 3). Both
BFPSCs and DPSCs expressed markers of MSC phenotypes, such as CD105, CD44, CD73,
and CD90, while lacking expression of CD45 (a marker of hematopoietic cells) according
to the requirements proposed by the International Society for Cellular Therapy (ISCT) for
defining MSCs [26]. The percentages of expression of these markers were not different
between BFPSCs and DPSCs and are reported in Table 2.
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Figure 3. Cytofluorimetric characterization of BFPSCs and DPSCs. (A) In in vitro cultures, BFPSCs developed a population
of about 80% of the MSCs expressing CD105, CD73, CD90 and CD44 and were basically negative for CD3 and CD45, whereas
(B) DPSCs cultures were 18% of the MSCs. The squares indicate double positive cells for CD73 and CD105. As indicated by
the arrow, the double positive CD105/CD73 cells also expressed CD90 and CD44.

Table 2. The values indicated represent the mean ±SD percentage of expression of these MSC
markers by BFPSCs and DPSCs.

CD44 CD73 CD90 CD105

BFPSCs 95.4 ± 2.1 84.5 ± 7.8 98.9 ± 0.8 76.8 ± 23
DPSCs 97.9 ± 1.2 95.1 ± 3.4 98.9 ± 0.7 65.3 ± 30.1

About 80% of the BFPSCs expressed the markers CD105, CD44, CD73, and CD90, while
being negative for CD45 and CD3 (Figure 3A). In the DPSC cultures, the cell population
result was more heterogeneous, and only 18% of cells expressed MSCs markers (Figure 3B).
These data can explain the different MSC yields from these sources, which thus may
influence stem cell retrieval.
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3.3. BFPSCs and DPSCs Differentiate into Osteoblast-Like

We investigated the osteogenic differentiation potential of the isolated BFPSCs and
DPSCs. After 14 days of culture in the osteogenic medium, both the BFPSCs and the DPSCs
were able to differentiate into osteoblast-like cells, as shown by the expression of ALP
(Figure 4A,C) and by the mineralization granules released in the culture (Figure 4B,D). We
also dosed the release of osteocalcin in the cell culture media without significant differences
showing between the BFPSCs and the DPSCs, even though the level of osteocalcin was
higher in the BFPSCs than in the DPSCs (Figure 4E). To assess the early osteogenic differen-
tiation of BFPSCs and DPSCs, the transcript levels of the collagen type I (Figure 4F) and
RUNX-2 (Figure 4G) genes were evaluated through quantitative RT-PCR at 3 and 7 days.
As it is possible to appreciate from Figure 4, the BFPSCs and DPSCs were properly induced
toward the osteogenic commitment, and the bone markers were constantly higher in the
osteodifferentiated cells than in the control.

Biomedicines 2021, 9, x FOR PEER REVIEW 9 of 13 
 

We investigated the osteogenic differentiation potential of the isolated BFPSCs and 

DPSCs. After 14 days of culture in the osteogenic medium, both the BFPSCs and the 

DPSCs were able to differentiate into osteoblast-like cells, as shown by the expression of 

ALP (Figure 4A, C) and by the mineralization granules released in the culture (Figure 

4B,D). We also dosed the release of osteocalcin in the cell culture media without significant 

differences showing between the BFPSCs and the DPSCs, even though the level of oste-

ocalcin was higher in the BFPSCs than in the DPSCs (Figure 4E). To assess the early oste-

ogenic differentiation of BFPSCs and DPSCs, the transcript levels of the collagen type I 

(Figure 4F) and RUNX-2 (Figure 4G) genes were evaluated through quantitative RT-PCR 

at 3 and 7 days. As it is possible to appreciate from Figure 4, the BFPSCs and DPSCs were 

properly induced toward the osteogenic commitment, and the bone markers were con-

stantly higher in the osteodifferentiated cells than in the control. 

 

Figure 4. Osteodifferentiation capability. Both BFPSCs and DPSCs differentiate into osteoblast-like cells expressing alka-

line phosphatase (ALP) (A,C), and were able to deposit mineralizing granules (B,D). The BFPSCs and DPSCs also released 

osteocalcin in the culture media. Magnification 5× (E) osteocalcin detection performed through ELISA 21 days after oste-

oinduction. (F,G). qRT-PCR analysis of early osteogenic markers: collagen type I (F), RUNX-2 (G), performed on BFPSCs 

and DPSCs under basal conditions (GM) and in differentiating medium (OM) at 3 and 7 days. The symbol (*) indicates a 

significant difference between GM and OM conditions, considering a p-value < 0.05. 

  

Figure 4. Osteodifferentiation capability. Both BFPSCs and DPSCs differentiate into osteoblast-like cells expressing alkaline
phosphatase (ALP) (A,C), and were able to deposit mineralizing granules (B,D). The BFPSCs and DPSCs also released
osteocalcin in the culture media. Magnification 5× (E) osteocalcin detection performed through ELISA 21 days after
osteoinduction. (F,G). qRT-PCR analysis of early osteogenic markers: collagen type I (F), RUNX-2 (G), performed on BFPSCs
and DPSCs under basal conditions (GM) and in differentiating medium (OM) at 3 and 7 days. The symbol (*) indicates a
significant difference between GM and OM conditions, considering a p-value < 0.05.

4. Discussion

Among the SCs described in the literature for regenerative purposes, human adult
SCs represent a promising tool bereft of ethical issues and with extremely limited safety
concerns [21]. Although bone marrow-derived stem cells (BMSCs) have traditionally been
the prototypical MSCs, their highly invasive harvest procedure has prompted research
toward easily attainable alternatives endowed with similar multilineage potential, such as
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ASCs. Nonetheless, SCs derived from different anatomical sites could be more prone to
respond to stimuli naturally secreted in the body area of origin, and thus for the treatment
of dental defects, SCs isolated from oral cavity should be more effective than ASCs.

In the oral cavity, there are different sources of SCs, such as DPSCs [3], SHED [14,15],
PDLSCs [16] and BFPSCs [18,19]. All have been proposed as promising candidates for
tissue engineering protocols in the dental and maxillofacial fields [27]. Strangely, though,
studies of SCs deriving from more than one site owing to the same individual are not easily
reported in the scientific literature. This prevents direct intra-individual comparison of
the phenotypical features and effective differentiative abilities of different types of SCs.
Therefore, to eliminate this possible lack of knowledge, we collected and compared BFPSCs
to DPSCs isolated from the same donor, in a series of twelve patients.

Interestingly, the isolation success rate differed greatly between BFPSCs (58%) and
DPSCs (25%). Only a few previous studies dealt with the success rate of the isolation of
different types of MSCs. For instance, Biebak et al. [28] optimized the protocols to increase
the isolation yield of umbilical cord blood MSCs (UCB-MSCs) up to 63%, while BMSCs
were used as a positive control (success rate 100%). Nakajima et al. [22] investigated the
success rate of isolating DPSCs and SHED, reporting 70% and 82%, respectively. Neither of
these studies harvested the two cell types from the same donor, most probably owing to
the apparent difficulty in collecting cells from two different sites within the same patient,
and hence derives the relevance of the protocol proposed in the present work. As remarked
before, BFPSCs were chosen as representative ASCs following the study by Broccaioli and
colleagues [21], who pointed out their similarity to traditional ASCs.

After harvesting, BFPSCs were more numerous in terms of cells alive and proliferated
more than DPSCs at 72 h. Both the BFPSCs and the DPSCs expressed typical MSCs
markers, such as CD105, CD44, CD73, and CD90, but the yield of cells expressing these
markers was higher in the BFPSC population than it was in the DPSCs. DPSCs and
BFPSCs show a different morphology, and we suggest that it depends on their different
origin of isolation. Previously, we published data concerning the different morphologies
and expression patterns of cytokines and growth factors between ASCs and SHEDs [15].
Even though all these cells are MSCs, they derive from specific tissues. Retaining some
memory of those tissues, they thus exhibit some tissue-specific properties in addition to
more generic multipotential properties [29,30]. As for the osteodifferentiation capability of
the two cell types, both promoted the formation of mineralized tissue in vitro, although
the level of expression of osteocalcin was higher in the BFPSCs. This is consistent with
the accumulating evidence supporting the usage of DPSCs [31–35] and ASCs [36–40] as
promising tools for bone regeneration.

With the increasing number of studies involving different intraoral cell sources, how-
ever, more extensive research will be needed to attain safe and predictable regenerative
medicine procedures. The efficiency of an isolation protocol varies according to several
parameters and may be conveniently tailored to ex vivo manipulation [41]. For instance,
the Good Manufacturing Process requires serum-free medium (SFM) or auto serum to
reduce the risk of viral and prion contamination. Moreover, long-term MSC cultures may
undergo malignant transformation [42], making it mandatory to obtain the highest number
of cells in the shortest time possible. Both DPSCs [43] and ASCs [44] could be expanded
successfully in culture media without animal-derived antigens (xenofree).

Within the limits of this study, the data showed that BFP is a viable intraoral source of
MSCs for regenerating bone defects. Here, BFPSCs could properly grow and differentiate,
and seemed even to outperform DPSCs. Under this perspective, our results may become
relevant soon when a choice is to be made whether to employ extracted teeth or adipose
tissue for bone regenerative protocols.
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