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Abstract

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2), has led to unprecedented social and eco-

nomic consequences. The risk of morbidity and mortality due to COVID-19 increases

dramatically in the presence of coexisting medical conditions, while the underlying mecha-

nisms remain unclear. Furthermore, there are no approved therapies for COVID-19. This

study aims to identify SARS-CoV-2 pathogenesis, disease manifestations, and COVID-19

therapies using network medicine methodologies along with clinical and multi-omics obser-

vations. We incorporate SARS-CoV-2 virus–host protein–protein interactions, transcrip-

tomics, and proteomics into the human interactome. Network proximity measurement

revealed underlying pathogenesis for broad COVID-19-associated disease manifestations.

Analyses of single-cell RNA sequencing data show that co-expression of ACE2 and

TMPRSS2 is elevated in absorptive enterocytes from the inflamed ileal tissues of Crohn dis-

ease patients compared to uninflamed tissues, revealing shared pathobiology between

COVID-19 and inflammatory bowel disease. Integrative analyses of metabolomics and tran-

scriptomics (bulk and single-cell) data from asthma patients indicate that COVID-19 shares

an intermediate inflammatory molecular profile with asthma (including IRAK3 and ADRB2).

To prioritize potential treatments, we combined network-based prediction and a propensity

score (PS) matching observational study of 26,779 individuals from a COVID-19 registry.

We identified that melatonin usage (odds ratio [OR] = 0.72, 95% CI 0.56–0.91) is

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000970 November 6, 2020 1 / 43

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhou Y, Hou Y, Shen J, Mehra R,

Kallianpur A, Culver DA, et al. (2020) A network

medicine approach to investigation and population-

based validation of disease manifestations and

drug repurposing for COVID-19. PLoS Biol 18(11):

e3000970. https://doi.org/10.1371/journal.

pbio.3000970

Academic Editor: Nicole Soranzo, Wellcome Trust

Sanger Institute, UNITED KINGDOM

Received: June 5, 2020

Accepted: October 28, 2020

Published: November 6, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pbio.3000970

Copyright: © 2020 Zhou et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data sets used in

this study and their sources for downloading can

be found in S1 Table. The bulk and single-cell RNA-

https://orcid.org/0000-0002-6023-3901
https://orcid.org/0000-0002-3693-5145
https://orcid.org/0000-0002-8041-6377
https://orcid.org/0000-0002-1736-2847
https://doi.org/10.1371/journal.pbio.3000970
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000970&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000970&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000970&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000970&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000970&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000970&domain=pdf&date_stamp=2020-12-10
https://doi.org/10.1371/journal.pbio.3000970
https://doi.org/10.1371/journal.pbio.3000970
https://doi.org/10.1371/journal.pbio.3000970
http://creativecommons.org/licenses/by/4.0/


significantly associated with a 28% reduced likelihood of a positive laboratory test result for

SARS-CoV-2 confirmed by reverse transcription–polymerase chain reaction assay. Using a

PS matching user active comparator design, we determined that melatonin usage was asso-

ciated with a reduced likelihood of SARS-CoV-2 positive test result compared to use of

angiotensin II receptor blockers (OR = 0.70, 95% CI 0.54–0.92) or angiotensin-converting

enzyme inhibitors (OR = 0.69, 95% CI 0.52–0.90). Importantly, melatonin usage (OR =

0.48, 95% CI 0.31–0.75) is associated with a 52% reduced likelihood of a positive laboratory

test result for SARS-CoV-2 in African Americans after adjusting for age, sex, race, smoking

history, and various disease comorbidities using PS matching. In summary, this study pres-

ents an integrative network medicine platform for predicting disease manifestations associ-

ated with COVID-19 and identifying melatonin for potential prevention and treatment of

COVID-19.

Introduction

The ongoing global coronavirus disease 2019 (COVID-19) pandemic has led to 38 million

confirmed cases and 1 million deaths worldwide as of October 14, 2020. The United States

alone has recorded nearly 8 million confirmed cases, with a death toll of more than 216,000

[1]. Several retrospective studies have reported the clinical characteristics of individuals with

symptomatic COVID-19, and an emerging theme has been the significantly higher risk of

morbidity and mortality among individuals with 1 or more comorbid health conditions, such

as hypertension, asthma, diabetes mellitus, cardiovascular or cerebrovascular disease, chronic

kidney disease, and malignancy [2–7]. However, these retrospective clinical studies are limited

by small sample sizes and unmeasured confounding factors, leaving the underlying patho-

mechanisms largely unknown. More specifically, it is unclear whether associations of disease

manifestations and COVID-19 severity are merely a reflection of poorer health in general, or a

clue to shared pathobiological mechanisms.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes

COVID-19, is an enveloped virus that carries a single-stranded positive-sense RNA genome

[7,8]. SARS-CoV-2 is a newly discovered member of the coronavirus (CoV) family [9]. SARS-

CoV-2 enters host cells via binding of its spike protein to the angiotensin converting enzyme 2

(ACE2) receptor on the surfaces of many cell types [10]. This binding is primed by transmem-

brane protease serine 2 (TMPRSS2) [10] and the host cell protease furin [11] (Fig 1A). Studies

have shown that ACE2 and TMPRSS2 are highly co-expressed in alveolar type II (AT2) epithe-

lial cells in the lung [12], nasal mucosa [13], bronchial secretory cells [14], and absorptive

enterocytes in the ileum [15]. Yet, much remains to be learned about how these critical human

proteins involved in the infection and replication of SARS-CoV-2 are associated with various

disease comorbidities and complications. Systematic identification of the host factors involved

in the protein–protein interactions (PPIs) of SARS-CoV-2 and the human host will facilitate

identification of drug targets and advance understanding of the complications and comorbidi-

ties resulting from COVID-19 [16–20]. Studies using transcriptomics [21], proteomics [22],

and interactomics (PPIs) methods [8] have contributed to a better understanding of the

SARS-CoV-2–host interactome, which has enabled the investigation of the complications and

comorbidities of SARS-CoV-2 and a facilitated search for effective treatment (Fig 1B).

Major efforts are underway to develop safe and effective drugs to treat COVID-19: Preven-

tive and therapeutic strategies currently being explored include vaccination, SARS-CoV-
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2-specific antibodies, novel nucleoside analogs such as remdesivir, and repurposed drugs

[23,24]. Remdesivir, an agent originally developed for treatment of Ebola virus, was reported

to shorten the time to recovery in adults who were hospitalized with COVID-19 [25]; yet, a

10-day course of remdesivir did not show a statistically significant difference in clinical status

compared with standard care for patients with moderate COVID-19 [26]. Dexamethasone, an

FDA-approved glucocorticoid receptor (GR) agonist, has been shown to reduce mortality by

one-third in hospitalized COVID-19 patients requiring ventilation and by one-fifth in individ-

uals requiring oxygen [27]; yet, dexamethasone did not reduce death in COVID-19 patients

not receiving respiratory support [27]. Many existing drugs are currently being or have been

tested in clinical trials, such as the antimalarial drug hydroxychloroquine and protease inhibi-

tor combination lopinavir/ritonavir; results from these trials have not yet shown significant

clinical benefits for COVID-19 patients [28,29]. We recently evaluated nearly 3,000 FDA-

approved/investigational drugs using a network-based method and prioritized 16 drug candi-

dates and 3 drug combinations for COVID-19 [30]. Yet, the answer to the key question of why

an approved drug originally documented for other diseases might be beneficial for COVID-19

remains unclear. One possible explanation is that COVID-19 shares common disease pathobi-

ology or functional pathways elucidated by the human PPIs [30–32]. Systematic identification

of common disease pathobiological pathways shared by COVID-19 and other diseases would

offer novel targets and therapies for COVID-19.

In this study, we present an integrative network medicine platform that quantifies the asso-

ciation of COVID-19 with other diseases across 6 categories, including autoimmune, malig-

nant cancer, cardiovascular, metabolic, neurological, and pulmonary (Fig 1C). The rationale

for these analyses rests on the notions that (1) the proteins that functionally associate with a

disease (such as COVID-19) are localized in the corresponding subnetwork within the com-

prehensive human PPI network [31–34] and (2) proteins that are associated with a specific dis-

ease may be directly targeted by the virus or are in the close vicinity of the target host proteins.

We first performed network analysis followed by single-cell RNA sequencing (RNA-Seq) data

analysis to identify the underlying pathobiological relationships between COVID-19 and its

associated comorbidities. Additionally, we use our network medicine findings and patient data

from a large COVID-19 patient registry database to identify and prioritize existing FDA-

approved drugs as potential COVID-19 drug candidates (Fig 1D).

Results

A global map of the SARS-CoV-2 virus–host interactome

We assembled 4 host gene/protein sets for SARS-CoV-2 (S1 and S2 Tables): (1) SARS2-DEG,

representing the differentially expressed genes (DEGs) from the transcriptomic data of SARS-

CoV-2-infected primary human bronchial epithelial cells; (2) SARS2-DEP, representing the

differentially expressed proteins (DEPs) from the proteomic data of SARS-CoV-2-infected

human Caco-2 cells; (3) HCoV-PPI, representing the literature-based virus–host proteins

Fig 1. Overall workflow of this study. (A) A diagram illustrating the basic pathogenesis of SARS-CoV-2. (B) A diagram illustrating how to

build a global interactome map for SARS-CoV-2. We compiled the SARS-CoV-2 human target gene/protein sets from multi-omics data from

the transcriptome, proteome, and human interactome, and validated network-based findings using patient data from a COVID-19 registry. (C)

A diagram illustrating network-based measurement of disease manifestations associated with COVID-19. We systematically evaluated the

network proximities of the SARS-CoV-2 human target genes/proteins with 64 diseases across 6 main categories: autoimmune, cancer,

cardiovascular, metabolic, neurological, and pulmonary. (D) A workflow illustrating validation of network-based findings. We performed

single-cell analyses to further investigate the underlying mechanisms of COVID-19 with asthma and inflammatory bowel disease. We

prioritized nearly 3,000 US Food and Drug Administration–approved/investigational drugs for their potential anti-SARS-CoV-2 effects from

network-based findings and validated drug–COVID-19 outcomes using an institutional review board–approved COVID-19 patient registry.

https://doi.org/10.1371/journal.pbio.3000970.g001
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across multiple human coronaviruses (HCoVs), including SARS-CoV-1 (from the 2002–2003

pandemic) and MERS-CoV; and (4) SARS2-PPI (SARS-CoV-2-specific virus–host PPIs).

Since HCoV-PPI and SARS2-PPI both involve physical virus–host PPIs, we further combined

them as the fifth dataset, PanCoV-PPI.

We first performed functional enrichment analyses for the 5 different gene/protein datasets.

We found that these datasets share several common pathways and ontology terms (Fig 2A; S1

Data), such as phagosome, measles, apoptosis, NF-κB signaling pathway, neutrophil-related

immunity, apoptotic processes, virus transport, viral genome replication, and response to

interferon, yet they differ considerably in terms of their most significantly enriched pathways

(S1–S5 Figs). This is especially noticeable for SARS2-DEP and SARS2-PPI. While SARS2-DEG

(S1 Fig) and HCoV-PPI (S3 Fig) show more enrichment in immune responses and viral path-

ways, SARS2-DEP (S2 Fig) is more related to various cellular metabolic pathways, and

SARS2-PPI (S4 Fig) is more enriched in DNA replication, RNA transcription, and protein

translation. These observations suggest that these different SARS-CoV-2 viral–host gene/pro-

tein sets capture complementary aspects of the biological and cellular states of the viral life

cycle and host immunity. Therefore, building a global virus–host map (including interactome,

transcriptome, and proteome) that incorporates data from transcriptomics, proteomics, and

physical virus–host PPIs are essential for a better understanding of the pathogenesis of

COVID-19. This global virus–host map for SARS-CoV-2 can offer a more complete picture of

the interconnected functional pathways involved in viral pathogenesis, thereby facilitating the

discovery of therapeutic targets.

Network and biological characteristics of virus–host interactome for

SARS-CoV-2

In addition to identifying the functions that these viral gene/protein sets represent, we next

characterized the network patterns (node degree in the human PPI network) and bioinformat-

ics features of these SARS-CoV-2 datasets, including dN/dS ratio, evolutionary rate ratio, and

lung expression specificity (Figs 2B–2G and S6). To find common as well as unique network

and bioinformatic characteristics of SARS-CoV-2, we further compiled 4 additional virus–host

gene/protein networks, identified by different methods, for comparison (S3 Table): (1) 900

virus–host interactions connecting 10 other viruses and 712 host genes identified by gene-trap

insertional mutagenesis, (2) 2,855 known virus–host interactions connecting 2,443 host genes

and 55 pathogens identified from RNA interference (RNAi), (3) 579 host proteins mediating

translation of 70 innate immune-modulating viral open reading frames (viORFs), and (4)

1,292 host genes mediating influenza–host interactions identified by co-immunoprecipitation

and liquid chromatography-mass spectrometry (Co-IP+LC/MS). These virus–host gene/pro-

tein networks have been well characterized [35–37] and offer high-quality datasets (S3 Table)

for comparisons. We found that host proteins in PanCoV-PPI (Fig 2B) and 4 other datasets

(SARS2-DEG, SARS2-DEP, HCoV-PPI, and SARS2-PPI) (S6 Fig) were more likely to be

highly connected in the human PPI network. Several hub genes, such as JUN, XPO1, MOV10,

NPM1, VCP, and HNRNPA1, have the highest degree (connectivity) in the PanCoV-PPI net-

work (S2 Table). PanCoV-PPI has a comparable degree distribution with host genes/proteins

identified by viORFs and Co-IP+LC/MS, although marginally higher than that identified by

RNAi and gene-trap insertional mutagenesis assay (Fig 2F).

Expression patterns of genes in a specific disease-related tissue play a crucial role for eluci-

dation of disease pathogenesis and drug discovery [31,32]. Given the major impact of SARS-

CoV-2 on pulmonary function and lung injury [2], we inspected the lung-specific expression

of genes in PanCoV-PPI using a Z score measure (see Materials and Methods—Tissue
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specificity analysis) compared to expression in other tissues from the GTEx database [38]. We

found that most host genes for SARS-CoV-2 have high expression in lung (Fig 2E; S2 Table)

compared to other tissues; yet, ACE2 has a low expression in lung compared to other tissues. A

recent study showed that ACE2 was primarily expressed in the epithelial cells in lungs, and

only 3.8% of AT2 pneumocytes expressed both ACE2 and TMPRSS2, but ACE2 is significantly

upregulated in smokers and 24–48 hours following SARS-CoV-2 infection [12,39]. Another

study also showed that despite relatively low expression of ACE2 in the lung, ACE2 was

expressed in multiple epithelial cell types along the airway [13]. Therefore, it is important to

understand the cell-type-specific SARS-CoV-2 pathogenesis at the single-cell level.

To inspect the evolutionary factors underlying the SARS-CoV-2–human PPIs, we investi-

gated the selective pressure and evolutionary rates quantified by the dN/dS ratio using human–

mouse orthologous gene pairs. We found that PanCoV-PPI shows stronger purifying selection

(lower dN/dS ratio [Fig 2C] and evolutionary rate ratio [Fig 2D]) compared to the same num-

ber of random genes. PanCoV-PPI is also comparable to 4 other virus–host genes/protein

datasets identified by different assays (Fig 2F and 2G) in terms of node degrees and dN/dS
ratios. Altogether, these observations suggest that the virus–host PPIs assembled in this study

offer a high-quality interactome map for SARS-CoV-2 for identifying pathogenesis and poten-

tial treatments for COVID-19.

To inspect shared viral pathways across different viruses and SARS-CoV-2, we further per-

formed network overlap analysis of PanCoV-PPI with 712 host genes across 10 types of other

viruses identified by gene-trap insertional mutagenesis assays [35]. We found a significant

overlap of the SARS-CoV-2 host proteins with non-coronaviruses (P< 0.002, Fisher’s exact

test; Fig 2H). For example, BRD2, a transcriptional regulator that belongs to the Bromodomain

and Extra-Terminal motif family, is connected to SARS-CoV-2 and 2 other viruses, herpes

simplex virus 2 (HSV-2) and reovirus. RHOA, encoding a small GTPase protein in the Rho

family of GTPases, is connected to SARS-CoV-2, cowpox, and HSV-2 as well. RHOA has been

reported to be involved in multiple human diseases, including cardiovascular disease [40] and

cancer [41]. These observations indicate possible disease manifestations associated with

SARS-CoV-2.

SARS-CoV-2 cellular network perturbations of disease manifestations

Investigation of the relationships between human host proteins targeted by SARS-CoV-2 and

disease susceptibility genes may offer crucial information for identifying COVID-19-associ-

ated disease manifestations. We thus inspected the overlap between SARS-CoV-2 host genes/

proteins and the susceptibility gene sets implicated in different diseases and biological events

(Fig 2I). We found that host genes/proteins targeted by SARS-CoV-2 are significantly enriched

in Mendelian disease (P = 0.002, Fisher’s exact test), orphan disease (P = 0.044), and cancer

Fig 2. Network and biological characteristics of the SARS-CoV-2 interactome map. (A) Pathway and Gene Ontology (biological process)

enrichment analysis results of the SARS-CoV-2 host genes/proteins across 5 different datasets. We assembled 5 gene/protein datasets from

SARS-CoV-2 host protein–protein interactions, transcriptomics, and proteomics (S2 Table). (B–D) Network and biological characteristics of the

SARS-CoV-2 host genes/proteins. The proteins in PanCoV-PPI have higher node degrees (B), lower dN/dS ratios (C), and lower evolutionary ratios

(D) compared to randomly selected proteins (grey, mean ± standard deviation of 100 repeats). (E) Among the 460 proteins in PanCoV-PPI, 450

(98%) are expressed in lungs, and 317 (69%) have lung-specific expression (Z> 0). (F and G) The distribution of the node degrees in the human

interactome and dN/dS ratios of PanCoV-PPI and 4 published virus-related host protein sets (S3 Table). (H) The shared target human proteins

(blue) of SARS-CoV-2 (red) and other viruses (green). (I) SARS-CoV-2 target proteins overlap significantly with disease-associated genes

(Mendelian disease and orphan disease), cancer genes, cell cycle genes, and innate immune genes. The data underlying this figure can be found in

S1 Data. Co-IP+LCMS, co-immunoprecipitation and liquid chromatography–mass spectrometry; CoV, coronavirus; dN/dS ratio, nonsynonymous

to synonymous substitution rate ratio; FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; RNAi, RNA interference;

viORF, viral open reading frame.

https://doi.org/10.1371/journal.pbio.3000970.g002
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(P< 0.001). Mechanistically, SARS-CoV-2 target host genes are significantly enriched in cell

cycle genes (P< 0.001) and innate immune genes (P< 0.001).

Using the 5 SARS-CoV-2 host gene/protein sets, we next tried to identify potential

COVID-19 comorbidities. To achieve this, we assembled the disease–protein network of

COVID-19 and 6 disease categories (S4 Table). For pan-cancer analysis, the somatic driver

genes were retrieved from the Cancer Gene Census Tier 1 gene table [42,43]. The putative

somatic driver genes for individual cancer types were identified from The Cancer Genome

Atlas projects and were downloaded from a previous study [44]. For autoimmune, pulmonary,

neurological, cardiovascular, and metabolic categories, we extracted their associated genes/

proteins from the Human Gene Mutation Database (HGMD) [45,46]. Each gene from HGMD

has at least 1 reported mutation associated with the disease. This information on the genes, in

addition to the sources, counts, and terms used in HGMD to identify the diseases, can be

found in S4 Table. Using the disease–protein network together with the SARS2-PPI (SARS-

CoV-2 virus–host interactome) and HCoV-PPI (HCoV–host interactome) sets, we examined

the overall connectivity of the disease-associated proteins and the SARS-CoV-2 target host

proteins in the human PPI network (Fig 3A; S1 File; S2 Data). To build the global network for

the disease comorbidities, we extracted the PPIs from the human interactome for the virus tar-

get proteins and disease-associated proteins. Each node indicates a virus target host protein

(blue) or a disease-associated protein (green). Some disease-associated proteins can be directly

targeted by the viruses, as shown in orange. Edges among these protein nodes indicate PPIs.

For SARS-CoV-2, the targets of its individual viral proteins are shown based on the SARS2-PPI

dataset. Due to their tendency of having common disease-associated proteins, some disease

categories tend to cluster closely, e.g., cancer and neurological. Diseases from other categories,

such as autoimmune and pulmonary, are scattered. Most of the virus target proteins are con-

nected with the disease-associated proteins, which suggests shared pathobiological pathways of

COVID-19 and these diseases. Various cancer types formed a relatively distant module from

the virus targets, compared to other disease categories.

Shown in Fig 3A, the disease genes can interact with the SARS-CoV-2 viral proteins either

directly or indirectly in the human protein–protein interactome. For example, among the 4

chronic obstructive pulmonary disease (COPD)–associated proteins shown in the network,

TGFB1 is the direct target of HCoV-229E, and all 4 proteins (TGFB1, DEFB1, SNAI1, and

ADAM33) interact with at least 1 SARS-CoV-2 target protein. The risk of various cardiovascu-

lar diseases was found to be increased in COVID-19 patients, including heart block, coronary

artery disease, congestive heart failure, and arrhythmia, which is consistent with clinically

reported myocardial injury [47] and cardiac arrest [48]. These observations reveal a common

network relationship between COVID-19 and human diseases (Fig 3A). We then performed

meta-analysis of 34 COVID-19 clinical studies (S5 Table) to evaluate the pooled risk ratios of

10 comorbidities among 4,973 COVID-19-positive patients (including 2,268 with mild and

731 with severe COVID-19). The random effects model was used to estimate the pooled risk

ratio of disease severity. The tau2 and I2 statistics were used to evaluate the heterogeneity

among studies (see Materials and Methods—Risk ratio analysis for COVID-19 patients). We

found that patients with several disease comorbidities or risk factors—including COPD, car-

diovascular disease, stroke, diabetes mellitus, chronic kidney disease, hypertension, cancer,

and history of smoking—have significantly higher risks of severe COVID-19 (Fig 3B). The

overall pooled risk ratio for patients with COPD was 4.33 (95% CI 2.42–7.74, P = 0.001) in 12

low heterogeneous clinical studies (I2 = 0.0%, P = 0.6). The COVID-19 patients with cardiovas-

cular diseases had a risk ratio of 3.87 (95% CI 1.97–7.59, P = 0.001), and there was slightly

higher heterogeneity across the 13 studies (I2 = 57.6%, P = 0.005). We next turned to quantify
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the network-based relationships between COVID-19 and human diseases in the human inter-

actome model using state-of-the-art network proximity analysis [32,33,49].

Network-based measurement of COVID-19-associated disease

manifestations

We systematically evaluated the network-based relationships of the 64 diseases across the 6 cat-

egories to COVID-19 (Fig 4A; S3 Data). We used the state-of-the-art network proximity mea-

sure to evaluate the connectivity and the closeness of the disease proteins and SARS-CoV-2

host proteins, taking the topology of the human interactome network into consideration. To

test the significance of the proximity, Z scores and P values were calculated based on permuta-

tion tests (see Materials and Methods—Network proximity measure) and are shown in Fig 4A.

We found that each disease–disease pair has a well-defined network-based footprint. If the

footprint between the COVID-19 module and another disease module is significantly close

(low Z score and P< 0.05), the magnitude of the proximity is indicative of their biological rela-

tionship: Closer network proximity (Fig 4A) of SARS-CoV-2 host genes/proteins with a dis-

ease module indicates higher potential of manifestation between COVID-19 and a specific

disease. We first noticed that immunological, pulmonary, and neurological diseases showed

significant network proximity to different SARS-CoV-2 maps more frequently than did can-

cer, cardiovascular, and metabolic diseases. Several diseases have significant network proximi-

ties to more than 1 SARS-CoV-2 dataset, most notably inflammatory bowel disease (IBD),

attention-deficit/hyperactivity disorder, and stroke, which achieved significant P values for all

5 SARS-CoV-2 protein sets. Pulmonary diseases, including COPD, lung injury, pulmonary

fibrosis, and respiratory failure, achieved 4 significant proximities. Some diseases have signifi-

cant proximities to certain SARS-CoV-2 datasets, indicating associations at certain levels, e.g.,

asthma (transcriptomic), respiratory distress syndrome (proteomic), and hypertension

(HCoV-PPI and PanCoV-PPI).

Network visualization can further show the connections between SARS-CoV-2 and other

diseases, for example, respiratory distress syndrome (Fig 4B), sepsis (Fig 4C), and COPD (S7

Fig). Respiratory distress syndrome and sepsis are the 2 main causes of mortality in patients

with severe COVID-19 [50,51]. We found that multiple SARS-CoV-2 host proteins are directly

connected with the disease-associated proteins (Fig 4B). ABCA3 is a lipid transporter located

in the outer membrane of lamellar bodies in AT2 cells; mutations of the ABCA3 gene can dis-

rupt pulmonary surfactant homeostasis and lead to inherited pulmonary diseases [52].

Another membrane surface protein, the pulmonary-associated surfactant protein C encoded

by SFTPC, can cause lung injury when misfolded [53]. For sepsis, we noticed several inflam-

matory and immune-related proteins, such as IRAK1, IRAK3, IKBKB, and STAT3, in the net-

work, suggesting overlap of the inflammatory response activated in COVID-19 and sepsis (Fig

4C). It has been reported that an overzealous production of certain cytokines, such as IL-6,

caused by dysregulation of innate immune responses to SARS-CoV-2 infection, can result in a

“cytokine storm,” better known as cytokine release syndrome (CRS) [54]. The potential

Fig 3. A global network illustrating disease manifestations associated with human coronavirus. (A) The target human proteins of SARS-CoV-2

are connected to the disease-associated proteins. Blue links (edges) indicate physical protein–protein interactions. For SARS-CoV-2, its viral

proteins are shown by light red nodes. The target human proteins (blue) of the viruses are intricately connected to the disease-associated proteins

(green). Human disease nodes are colored by different disease categories: autoimmune, cancer, cardiovascular, metabolic, neurological, and

pulmonary. (B) Estimation of the pooled risk ratio using random effects meta-analysis for 10 comorbidities between patients with severe versus

non-severe COVID-19. The tau2 and I2 statistics were calculated to quantify the heterogeneity among studies. I2� 50% was considered as low

heterogeneity among studies, 50%< I2� 75% was considered as moderate heterogeneity, and I2 > 75% was considered as high heterogeneity. The

data underlying this figure can be found in S2 Data. COPD, chronic obstructive pulmonary disease; PPI, protein–protein interaction.

https://doi.org/10.1371/journal.pbio.3000970.g003
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Fig 4. A landscape of disease manifestations associated with COVID-19 quantified by network proximity measure. (A) Heatmaps showing the network

proximities of COVID-19 with 64 diseases across 6 categories. The network proximities of the disease modules and the 5 SARS-CoV-2 datasets were
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prognoses of acute respiratory distress syndrome and sepsis using IL-6 expression levels have

also been established [55–57]. IL-6 also has a significantly increased expression level in the

human bronchial epithelial cells infected with SARS-CoV-2 from the SARS2-DEG dataset

[21]. In addition, it is also potentially affected by SARS-CoV-2 through multiple PPIs (Fig 4B

and 4C, IL-6 neighbors), such as IL-6R, endophilin A1 (encoded by SH3GL2), and parathyroid

hormone like hormone (encoded by PTHLH). Our random effects meta-analysis of 5 clinical

studies of COVID-19 revealed that there was an increase of IL-6 levels in patients with severe

COVID-19 compared to those with non-severe COVID-19 (Fig 4D). The mean difference was

33.0 pg/ml (95% CI 0.58–65.3; Fig 4D), with high literature heterogeneity (I2 = 94%,

P< 0.001). These results indicate that IL-6 plays a critical role in COVID-19-associated respi-

ratory distress syndrome and sepsis. Due to the importance of IL-6 in SARS-CoV-2 infection,

IL-6 antagonists including tocilizumab [58] (NCT04315480) and sarilumab (NCT04327388)

are being investigated in clinical trials for treatment of patients with severe COVID-19.

As an illustration of the shared pathobiology and inflammatory pathways of COVID-19

with various disease manifestations (Fig 4), we next turned to focus on 2 inflammation-driven

diseases, asthma and IBD.

Inflammatory molecular profile shared by COVID-19 and asthma

Patients with severe COVID-19 symptoms showed a higher prevalence of dyspnea (S8A Fig;

P< 0.001). To understand the associations between COVID-19 and respiratory disease

(including asthma), we adopted a multimodal analysis utilizing bulk and single-cell transcrip-

tomics data and metabolomics data under the human interactome network model. To be spe-

cific, we identified the enzymes in the network that are associated with altered metabolites in

COVID-19 patients. Comparing the DEGs from asthma patients and DEGs from COVID-19

patients, we aimed to find the common genes/proteins or interacting proteins in these patient

groups. Using network analyses (degree enrichment and eigenvector centrality), we can rank

the importance of these genes. Last, we examined their expression in the cell types that are

more susceptible to SARS-CoV-2 (i.e., cells expressing more ACE2 and TMPRSS2).

Fig 5A shows the subnetwork of the connections among SARS-CoV-2 target host proteins

and asthma-associated proteins. Most of these proteins have enriched connections within the

subnetwork (Fig 5B; degree enrichment), i.e., more connections in the subnetwork than in a

random network of the same size in the human interactome. To evaluate the potential influ-

ence of the nodes in the network, we also computed the eigenvector centrality of these pro-

teins. A higher eigenvector centrality suggests a higher network influence of a specific protein

node. Six overlapped proteins (orange) from both groups were identified: NFKBIA, IRAK3,

TNC, IL-6, ADRB2, and CD86. A recent study showed that glucose metabolism plays a key

role in influenza A–regulated cytokine storm [59]. The plasma metabolome of asthma patients

versus healthy controls also suggests activated inflammatory and immune pathways [60].

Therefore, in addition to PPIs, we also integrated metabolomics data generated in a previously

evaluated using the “closest” network proximity measure (see Materials and Methods—Network proximity measure). The magnitude of the proximity is

indicative of their biological relationship: Closer network proximity of SARS-CoV-2 host genes/proteins and a disease indicates higher potential of

manifestation between COVID-19 and the disease. P< 0.05 computed by permutation test was considered significant (indicated by horizontal rectangles).

Three categories, autoimmune, pulmonary, and neurological, frequently show significant proximities to COVID-19. Inflammatory bowel disease, attention-

deficit/hyperactivity disorder, and stroke achieved significance with all 5 SARS-CoV-2 datasets. Underlined diseases are those highlighted in the Results. (B

and C) Highlighted subnetworks between SARS-CoV-2 host genes/proteins and the disease-associated proteins of respiratory distress syndrome (B) and

sepsis (C). (D) Clinical data analyses showed an association of COVID-19 severity with IL-6 expression levels in patients. Meta-analysis of the random effects

model was performed using the mean difference in IL-6 (pg/ml). There was high heterogeneity among these studies (I2 = 94%, P< 0.001). The data

underlying this figure can be found in S3 Data.

https://doi.org/10.1371/journal.pbio.3000970.g004
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assembled asthma cohort [61]. By matching the enzymes of the differential metabolites and

the proteins in the PPI network, we found 3 key metabolites: arachidonate, L-arginine, and L-

citrulline. L-arginine and L-citrulline were decreased in the sera of COVID-19 patients [62].

These metabolites were also decreased in asthma patients [61]. Arachidonate, the precursor of

a variety of products that regulate inflammatory pathways [63], was found to have an increased

level in the inflamed airways of asthma patients [64]. Arachidonate can be converted by

5-lipoxygenase encoded by ALOX5 to leukotriene, which is released during an asthma attack

and is responsible for the bronchoconstriction [65].

We further examined the gene expression data from 2 asthma cohorts from the Severe Asthma

Research Program [66,67]. Utilizing 2 bulk RNA-Seq datasets (GSE63142 and GSE130499) of

asthma patients compared to healthy controls, we identified that IRAK3 and ADRB2 had signifi-

cantly elevated expression (false discovery rate [FDR]< 0.05) in asthma patients. Both genes also

have significantly elevated expression in SARS-CoV-2-infected human bronchial epithelial cells

(Fig 5B). IRAK-M, encoded by IRAK3, regulates the toll-like receptor/interleukin-1 receptor path-

way and NF-κB pathway, and IRAK3 was identified as an asthma susceptibility gene [68]. ADRB2
encodes the beta2-adrenergic receptor. The polymorphisms of ADRB2 (p.Arg16Gly and p.

Gln27Glu) increase the risk of asthma occurrence, and p.Gln27Glu is associated with asthma

severity [69]. IRAK3 and ADRB2 also have high eigenvector centrality scores (top 5 and top 2

among these genes, respectively; Fig 5B, eigenvector centrality). Altogether, altered IRAK3 and

ADRB2 expression may explain relationships between COVID-19 and asthma, though these find-

ings require experimental and clinical validation in patients with these disorders.

To understand the expressions of the proteins in the asthma–COVID-19 network across

different cell types, especially cells that express ACE2, we analyzed the single-cell RNA-Seq

data from bronchial epithelium (Fig 5C) and lung (Fig 5F) [14]. Consistent with previous stud-

ies, ACE2 and TMPRSS2 have higher expression in a subtype of the secretory cells (secretory 3

cells) compared to other bronchial epithelial cell types (Figs 5D and S8B–S8F). In the lung,

ACE2 and TMPRSS2 have relatively higher expression in AT2 cells (Fig 5G and S8G–S8K). We

further examined the expression of the genes in the asthma–COVID-19 network (Fig 5A) in

these cell types (S9 Fig). Several genes were also more highly expressed in secretory 3 cells (Fig

5E; ALOX5, IRAK3, ADRB2, TNIP1, BID, CXCL5, and NFKBIZ) and in AT2 cells (Fig 5H;

CFTR, NFKBIA, NFKBIZ, and TNC), than in other cell types. IRAK3 and ADRB2 are among

the 6 overlapped genes, potentially implicating the roles of IRAK3 and ADRB2 in COVID-

19-associated asthma at the single-cell level as well.

Immune pathobiology shared by COVID-19 and IBD

It has been shown, using confocal and electron microscopy, that human small intestine is an

additional SARS-CoV-2 target organ [70]. Diarrhea is now well described as an occasional

Fig 5. Shared molecular profile between asthma and COVID-19. (A) A highlighted subnetwork between the asthma-associated genes, differential

metabolites in asthma, and SARS-CoV-2 host genes, under the human interactome network model. (B) A heatmap highlighting differential gene expression

analyses for the genes identified in the asthma and COVID-19 subnetwork analysis (A). We performed differential gene expression analysis using 2 existing

asthma cohorts (GSE63142 and GSE130499). Blue bars show the node degree enrichment in the subnetwork (A) compared to a random network of the same

size (left) and the eigenvector centrality (right). IRAK3 and ADRB2 (indicated with asterisks) are associated with asthma and are the targets of SARS-CoV-2.

They had significantly elevated expression in asthma patients and SARS-CoV-2-infected human bronchial epithelial cells. (C) UMAP visualization for human

bronchial epithelial cells. (D) Cell-type-specific expression levels of ACE2 and TMPRSS2 across 14 cell types in human bronchial epithelial cells. (E) Cell-type-

specific expression levels of 7 highlighted inflammatory genes (A and B) show elevated expression levels in secretory 3 cells compared to other cell types. (F)

UMAP visualization for lung cells. (G) Cell-type-specific expression levels of ACE2 and TMPRSS2 across 9 cell types in lung cells. (H) Cell-type-specific

expression levels of 4 highlighted inflammatory genes (A and B) show elevated expression levels in alveolar type II (AT2) cells compared to other cell types. The

data underlying this figure can be found in S4 Data. Single-cell data were retrieved from https://data.mendeley.com/datasets/7r2cwbw44m/1. See S1 Table for

more details of the datasets. FDR, false discovery rate; MvsC, mild versus control; SvsC, severe versus control; SvsM, severe versus mild.

https://doi.org/10.1371/journal.pbio.3000970.g005
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presenting symptom of COVID-19 [71]. Our network proximity analysis showed a significant

association of COVID-19 and IBD across all 5 SARS-CoV-2 datasets (Fig 4A). In addition,

patients with severe COVID-19 had higher risks of abdominal pain and diarrhea (Figs 6A and

S10). To understand these associations at the cellular level, we integrated network analysis and

single-cell RNA-Seq analysis using publicly available data [72]. As shown in Fig 6B (S5 Data),

although only 1 IBD-associated protein, HEATR3, was found to be the target of the SARS-

CoV-2 protein Orf7a, other IBD-associated proteins showed an enriched number of connec-

tions to the SARS-CoV-2 target proteins (Fig 6I, degree enrichment).

Using single-cell data from the ileum (distal small bowel) in Crohn disease patients [72], we

found that ACE2 and TMPRSS2 had low to undetectable expression in the non-epithelial cells

(Figs 6C, 6E, and S11A–S11E). However, they showed higher expression levels in the epithelial

cells, especially absorptive enterocytes (Figs 6D, 6F and S11F–S11J). We further found that

both ACE2 and TMPRSS2 had elevated expression levels in inflamed cells compared to unin-

flamed cells in the absorptive enterocytes (Figs 6G, S11K and S11L). The Pearson correlation

coefficient (PCC) of ACE2 and TMPRSS2 was also increased in the inflamed cells compared to

uninflamed cells (PCC = 0.165 versus PCC = −0.006) in the absorptive enterocytes. In absorp-

tive enterocytes expressing ACE2, the expression of ACE2 was significantly increased (Fig 6H;

P = 0.016) in the inflamed ileal tissues of Crohn disease patients compared to uninflamed tis-

sues. These observations prompted us to investigate the co-expression of the network genes in

the absorptive enterocytes (Fig 6I). Several genes showed elevated co-expression with ACE2 in

inflamed cells, such as XIAP, SMAD3, DLG5, SLC15A1, RAC1, STOM, RAB18, and AKAP8.

We next turned to highlight 2 potential associations between COVID-19 and IBD. First,

SARS-CoV-2 protein Orf7a can directly interact with HEATR3 (top 2 eigenvector centrality;

Fig 6I), whose variant was shown to be associated with increased risk of IBD by genome-wide

association study [73]. Second, SARS-CoV-2 infection may impact RAC1 (top 4 eigenvector

centrality; Fig 6I) signal transduction pathways. RAC proteins play important roles in many

inflammatory pathways, and their dysregulation can be pathogenic. Increased RAC1 expres-

sion by single nucleotide polymorphisms promotes an inflammatory response in the colon

[74]. Mercaptopurine, an effective treatment for IBD, was found to lower RAC1 expression in

IBD patients [75]. Since our results show that RAC1 and ACE2 had higher co-expression in

inflamed enterocytes (Fig 6I), it is highly possible that these inflamed cells are more susceptible

to SARS-CoV-2 infection, and that the infection could lead to an altered RAC1 expression

level through PPIs with virus target proteins STOM, HDAC2, POLA2, CIT, and RAP1GDS1

(Fig 6B). Notably STOM (top 12 eigenvector centrality) was also more co-expressed with

ACE2 in inflamed cells compared to uninflamed cells (Fig 6I).

Network-based drug repurposing for COVID-19

Knowledge of the complex interplays between SARS-CoV-2 targets and human diseases indi-

cate possibilities of drug repurposing, as the drugs that target other diseases could potentially

target SARS-CoV-2 through the shared functional PPI networks [23]. In addition, drug repur-

posing efforts may also reveal unrecognized biological connections between originally

approved indications/diseases and COVID-19. For example, the aforementioned anti-inflam-

matory drugs tocilizumab and sarilumab that are now being tested for COVID-19 were origi-

nally used for rheumatoid arthritis. Although not significant, our network proximity results

show that rheumatoid arthritis has small network proximities (negative Z scores) across all 5

SARS-CoV-2 datasets (Fig 4A). Another drug, the thiopurine mercaptopurine, which has been

used to treat IBD [76], was one of the top repurposable drugs for COVID-19 proposed in our

previous work [30].

PLOS BIOLOGY Network medicine for COVID-19

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000970 November 6, 2020 15 / 43

https://doi.org/10.1371/journal.pbio.3000970


PLOS BIOLOGY Network medicine for COVID-19

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000970 November 6, 2020 16 / 43

https://doi.org/10.1371/journal.pbio.3000970


Therefore, we next performed network-based drug repurposing modeling using the existing

knowledge of the drug–target network and the global map of the SARS-CoV-2 interactome

built in this study. The basis for the network-based drug repurposing methodologies is the

observation that for a drug with multiple targets to be effective against a disease, its target pro-

teins should be within or in the immediate vicinity of the corresponding subnetwork of the

disease in the human interactome, as we have demonstrated in multiple diseases previously

[31,32]. Using our state-of-the-art network proximity framework, we measured the “closest”

proximities of nearly 3,000 drugs and the 4 SARS-CoV-2 host gene/protein profiles (SARS2-

DEG, SARS2-DEP, HCoV-PPI, and SARS2-PPI; S6 Table). Additionally, we performed gene

set enrichment analysis (GSEA) using 5 gene/protein expression datasets: 1 SARS-CoV-2 tran-

scriptomics dataset, 1 SARS-CoV-2 proteomics dataset, 1 MERS-CoV dataset, and 2 SARS-

CoV-1 transcriptomics datasets. GSEA was used to evaluate the individual drugs for their

potential to reverse the expression at the transcriptome or proteome level altered by the viruses

[35].

We next prioritized the drug candidates using subject matter expertise based on a combina-

tion of factors: (1) strength of the network-based and bioinformatics-based predictions (a

higher network proximity score and significant GSEA score; Fig 7; S6 Data), (2) literature-

reported antiviral activities or ongoing clinical trial information, (3) availability of sufficient

patient data for meaningful evaluation (exclusion of infrequently used medications) from our

COVID-19 registry database, and (4) well-defined antiviral mechanisms of action (such as

anti-inflammatory or immune modulators).

In total, we computationally identified 34 drugs that were associated (Z< −1.5 and

P< 0.05, permutation test) with the SARS-CoV-2 datasets (SARS2-DEG, SARS2-DEP,

HCoV-PPI, and SARS2-PPI) using the above criteria. These drugs were significantly proximal

to 2 or more SARS-CoV-2 host protein sets (Fig 7; S6 Data). We manually curated their

reported antiviral profiles. The disease categories that these drugs have been used to treat are

also shown in Fig 7. Ten drugs have been used to treat respiratory-related diseases, and the

most common categories for these drugs are antibiotic and β2 agonist. The next most common

disease category is cardiovascular diseases, for which 7 drugs were predicted. Among the 34

drugs, 3 drugs achieved significant network proximity with all 4 SARS-CoV-2 datasets investi-

gated here. These drugs are (1) the antibiotic drug cefdinir, which is a cephalosporin for the

treatment of bacterial infections [77]; (2) the antineoplastic drug toremifene, a selective estro-

gen receptor modulator that shows striking activities in blocking various viral infections at low

micromolar levels, including Ebola virus [78] (50% inhibitive concentration [IC50] = approxi-

mately 1 μM), MERS-CoV [79] (50% effective concentration [EC50] = 12.9 μM), SARS-CoV-1

[80] (EC50 = 11.97 μM), and SARS-CoV-2 [81] (IC50 = 3.58 μM); and (3) the antihypertensive

drug irbesartan, an angiotensin II receptor blocker (ARB) that can inhibit viral entry by inhib-

iting sodium/bile acid cotransporters [82].

Fig 6. Inflammatory molecular profile between inflammatory bowel disease (IBD) and COVID-19. (A) Patients with severe COVID-19 have higher

risks of abdominal pain and diarrhea by meta-analysis. (B) A highlighted subnetwork between the IBD-associated genes, the SARS-CoV-2 virus proteins,

and virus target proteins under the human interactome network model. (C) UMAP visualization of non-epithelial cells from the ileal tissues of patients with

Crohn disease. (D) UMAP visualization of epithelial cells from the ileal tissues of patients with Crohn disease. (E) Cell-type-specific expression of ACE2 and

TMPRSS2 in non-epithelial cells (C). (F) Cell-type-specific expression of ACE2 and TMPRSS2 in epithelial cells (D). (G) The co-expression of ACE2 and

TMPRSS2 is elevated in absorptive enterocytes of inflamed ileal tissues compared to uninflamed tissues in patients with Crohn disease. (H) Box plot

showing the expression of ACE2 and TMPRSS2 in absorptive enterocytes expressing ACE2 and TMPRSS2, respectively. (I) Co-expression analysis for the

genes in the subnetwork with ACE2 and TMPRSS2. Heatmap shows the Pearson correlation coefficients (PCCs) of ACE2 and TMPRSS2 with other genes

(labeled in [B]) in the absorptive enterocytes. Blue bars show the degree enrichment of the genes in the subnetwork compared to a random network of the

same size (left) and the eigenvector centrality (right). Asterisks indicate that these genes may play important roles in COVID-19-associated IBD. The data

underlying this figure can be found in S5 Data. Single-cell data were retrieved from the NCBI GEO database using the accession number GSE134809. See S1

Table for more details of the datasets.

https://doi.org/10.1371/journal.pbio.3000970.g006

PLOS BIOLOGY Network medicine for COVID-19

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000970 November 6, 2020 17 / 43

https://doi.org/10.1371/journal.pbio.3000970.g006
https://doi.org/10.1371/journal.pbio.3000970


Fig 7. Network-based prediction of drug repurposing for COVID-19. Thirty-four drugs from the top predicted list are highlighted, with the

disease category they are approved for by the US Food and Drug Administration. We highlight 3 types of evidence: (1) network proximities of

drugs’ targets across the 4 SARS-CoV-2 datasets (SARS2-DEG, SARS2-DEP, HCoV-PPI, and SARS2-PPI) in the human interactome, (2) gene set

enrichment analysis (GSEA) scores across 5 coronavirus transcriptomics and proteomics datasets, and (3) literature-reported antivirus profiles.

GSEA scores shown in grey indicate that these drugs cannot be evaluated due to the lack of data. Eight drugs that are currently being or have been

tested in COVID-19 clinical trials are highlighted. Horizontal bars in boxes indicate P< 0.05. The data underlying this figure can be found in S6

Data. ANDV, Andes virus; CHIKV, chikungunya virus; CMV, cytomegalovirus; DENV, dengue virus; EBOV, Zaire ebolavirus; EMCV,

encephalomyocarditis virus; ES, enrichment score; HAV, hepatitis A virus; HBV, hepatitis B virus; HCoV-229E, human coronavirus 229E; HCV,

hepatitis C virus; HDV, hepatitis D virus; HIV, human immunodeficiency virus; IAV, influenza A virus; IBV, influenza B virus; MERS-CoV, Middle

East respiratory syndrome coronavirus; MHV, mouse hepatitis virus; MV, measles virus; RSV, respiratory syncytial virus; RV, rhinovirus;

SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SVCV, spring viremia

of carp virus; WNV, West Nile virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pbio.3000970.g007
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Evidence from the COVID-19 registry data that supports the predicted

drug repurposing strategies

We next evaluated drug–outcome relationships using a large-scale patient dataset from the

Cleveland Clinic COVID-19 patient registry (see Materials and Methods—Patient data valida-

tion of the network-identified drugs using a COVID-19 registry). Applying subject matter

expertise to the 34 repurposed drugs resulted in identifying melatonin, a physiologic hormone

common to many living organisms, and carvedilol, approved for both hypertension and heart

failure. A retrospective COVID-19 cohort analysis was conducted to validate the potential pre-

vention effect of melatonin and carvedilol (Fig 8A and 8B). Among a total of 26,779 patients

tested for COVID-19 in the Cleveland Clinic Health System in Ohio and Florida, 8,274

patients were diagnosed as SARS-CoV-2 positive confirmed by reverse transcription–polymer-

ase chain reaction (RT-PCR) between March 8 and July 27, 2020 (Table 1).

We found that melatonin usage was associated with a 28% reduced likelihood of a positive

laboratory test result for SARS-CoV-2 (odds ratio [OR] = 0.72, 95% CI 0.56–0.91; Fig 8A) after

adjusting for age, sex, race, smoking history, and various disease comorbidities (diabetes,

hypertension, coronary artery disease, and COPD) using a propensity score (PS) matching

method. Angiotensin-converting enzyme inhibitors (ACEIs) and ARBs are 2 common types of

drugs for treatment of hypertension. A recent study showed that inpatient use of ACEI/ARB

was associated with lower risk of all-cause mortality compared with ACEI/ARB non-use

among hospitalized COVID-19 patients with hypertension [83]. Several recent studies also

showed that there was no association of ARBs and ACEIs with the risk of SARS-CoV-2 infec-

tion [84–86]. We further performed an observational study for 3 cohorts using user active

comparator design with ARBs and ACEIs used as comparators and PS adjustment for con-

founding factors as described in our previous study [32]. We found that melatonin usage was

significantly associated with a reduced likelihood of a positive laboratory test result for SARS-

CoV-2 compared to use of ARBs (OR = 0.70, 95% CI 0.54–0.92) and ACEIs (OR = 0.69, 95%

CI 0.52–0.90) after adjusting for age, sex, race, smoking history, and various disease comorbid-

ities (Fig 8A). Altogether, network-based prediction (Fig 7) and multiple observational analy-

ses (Fig 8A) suggest that melatonin usage offers a potential prevention and treatment strategy

for COVID-19; yet, randomized controlled clinical trials are urgently needed to test meaning-

fully the effect of melatonin for COVID-19.

We found that carvedilol use was significantly associated with a reduced likelihood of a pos-

itive laboratory test result for SARS-CoV-2 (OR = 0.74, 95% CI 0.56–0.97) after adjusting for

age, sex, race, smoking history, and various disease comorbidities. Yet, carvedilol did not show

a significant advantage compared to ARBs (OR = 0.90, 95% CI 0.65–1.25) or ACEIs

(OR = 0.73, 95% CI 0.53–1.01).

We therefore tested whether a clinically meaningful effect of melatonin and carvedilol can

be observed in different subgroups of patients. To be specific, we generated 5 different sub-

groups: asthma patients, hypertension patients, diabetes patients, black Americans (African

Americans), and white Americans. We found that melatonin was significantly associated with

a 52% reduced likelihood of a positive laboratory test result for SARS-CoV-2 in black Ameri-

cans (OR = 0.48, 95% CI 0.31–0.75; Fig 8C) after adjusting for age, sex, race, smoking, and var-

ious disease comorbidities, which is stronger than the association in white Americans

(OR = 0.77, 95% CI 0.57–1.04; Fig 8D). In addition, in black Americans, melatonin usage was

significantly associated with a reduced likelihood of a positive laboratory test result for SARS-

CoV-2 compared to ARB usage (OR = 0.57, 95% CI 0.34–0.96; Fig 8C), while there was no sig-

nificant difference compared to ACEI usage (OR = 0.65, 95% CI 0.39–1.11; Fig 8C). Yet, mela-

tonin usage was not significantly associated with a reduced likelihood of a positive laboratory
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test result for SARS-CoV-2 compared to use of ARBs (OR = 0.80, 95% CI 0.57–1.13; Fig 8D)

and ACEIs (OR = 0.85, 95% CI 0.60–1.20; Fig 8D) in white Americans. Among the 3 comorbid

Fig 8. Patient-based validation of drug repurposing for COVID-19. Validation for (A) melatonin and (B) carvedilol using the whole COVID-19

registry (all combined population). Validation for melatonin (C) in the black American (African American) subgroup and (D) in the white American

subgroup. Patient groups were matched using propensity score matching. Four models were evaluated: (1) model 1 was matched using age, sex, race,

and smoking without adjustment for the odds ratio; (2) model 2 was matched using age, sex, race, and smoking, and the odds ratio of COVID-19 was

adjusted by age, sex, race, and smoking; (3) model 3 was matched using age, sex, race, smoking, coronary artery disease, diabetes, hypertension, and

COPD without adjustment for the odds ratio; and (4) model 4 was matched using age, sex, race, smoking, coronary artery disease, diabetes,

hypertension, and COPD, and the odds ratio of COVID-19 was adjusted by age, sex, race, smoking, coronary artery disease, diabetes, hypertension,

and COPD. These models were adjusted for different variables using the propensity score matching approach (see Materials and Methods—Patient

data validation of the network-identified drugs using a COVID-19 registry). ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II

receptor blocker; COPD, chronic obstructive pulmonary disease; OR, odds ratio.

https://doi.org/10.1371/journal.pbio.3000970.g008

Table 1. Baseline characteristics of the melatonin and carvedilol use groups from the COVID-19 registry.

Use group and characteristic All individuals SARS-CoV-2-positive patients

Drug not used Drug used P value Drug not used Drug used P value

Melatonin

Total patients 25,724 1,055 8,052 222

Age 48.75 ± 20.58 63.42 ± 19.77 <0.001 49.44 ± 20.54 67.75 ± 18.92 <0.001

Sex (female) 15,274 (59.4) 549 (52.0) <0.001 4,528 (56.2) 114 (51.4) 0.168

Race other 1,376 (5.3) 48 (4.5) 0.287 462 (5.7) 3 (1.4) 0.008

Race black 5,848 (22.7) 273 (25.9) 0.019 2,721 (33.8) 70 (31.5) 0.528

Race white 16,182 (62.9) 695 (65.9) 0.054 4,290 (53.3) 142 (64.0) 0.002

Smoking 3,050 (13.8) 165 (16.1) 0.042 603 (9.0) 19 (8.8) 1

COPD & emphysema 1,768 (10.1) 257 (29.0) <0.001 441 (10.4) 45 (26.2) <0.001

Diabetes 4,681 (25.4) 417 (44.9) <0.001 1,453 (31.4) 78 (42.9) 0.001

Hypertension 9,810 (49.7) 764 (76.4) <0.001 3,148 (59.1) 170 (83.3) <0.001

Coronary artery disease 2,699 (15.1) 330 (36.3) <0.001 744 (17.1) 59 (34.7) <0.001

Asthma 5,075 (27.5) 265 (29.5) 0.211 1,243 (26.9) 38 (22.2) 0.203

ACEIs 1,873 (7.3) 208 (19.7) <0.001 607 (7.5) 48 (21.6) <0.001

ARBs 1,371 (5.3) 148 (14.0) <0.001 447 (5.6) 21 (9.5) 0.019

Carvedilol

Total patients 25,994 785 8,070 204

Age 48.81 ± 20.67 66.38 ± 15.40 <0.001 49.47 ± 20.65 68.28 ± 13.08 <0.001

Sex (female) 15,485 (59.6) 338 (43.1) <0.001 4,550 (56.4) 92 (45.1) 0.002

Race other 1,385 (5.3) 39 (5.0) 0.717 460 (5.7) 5 (2.5) 0.066

Race black 5,841 (22.5) 280 (35.7) <0.001 2,704 (33.5) 87 (42.6) 0.008

Race white 16,432 (63.2) 445 (56.7) <0.001 4,328 (53.6) 104 (51.0) 0.497

Smoking 3,080 (13.8) 135 (17.8) 0.002 604 (9.0) 18 (9.1) 1

COPD & emphysema 1,862 (10.5) 163 (26.8) <0.001 447 (10.5) 39 (27.1) <0.001

Diabetes 4,656 (25.0) 442 (63.4) <0.001 1,422 (30.6) 109 (66.9) <0.001

Hypertension 9,837 (49.2) 737 (95.7) <0.001 3,124 (58.6) 194 (97.5) <0.001

Coronary artery disease 2,615 (14.5) 414 (60.7) <0.001 704 (16.2) 99 (61.5) <0.001

Asthma 5,184 (27.7) 156 (25.1) 0.169 1,243 (26.7) 38 (26.6) 1

ACEIs 1,866 (7.2) 215 (27.4) <0.001 597 (7.4) 58 (28.4) <0.001

ARBs 1,324 (5.1) 195 (24.8) <0.001 418 (5.2) 50 (24.5) <0.001

Age is shown as mean ± standard deviation. All other characteristics are shown as number of cases (percentage). Percentages were calculated using the total number of

patients with known information for each variable. P values were calculated by 2-sided t test for age and Fisher’s exact test for other variables.

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; COPD, chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pbio.3000970.t001
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disease subgroup analyses, melatonin usage was significantly associated with a reduced risk of

SARS-CoV-2 positive test in diabetes patients only (OR = 0.52, 95% CI 0.36–0.75; S12B Fig);

there was no significant association for asthma (OR = 0.61, 95% CI 0.36–1.06; S12A Fig) or

hypertension (OR = 0.80, 95% CI 0.61–1.05; S12C Fig) patients. Carvedilol usage was not sig-

nificantly associated with a reduced likelihood of a positive laboratory test result for SARS--

CoV-2 among the 5 subgroups after adjusting for age, sex, race, smoking, and various disease

comorbidities (S12 and S13 Figs). Thus, further observations using large-scale independent

cohorts to test the meaningful effect of carvedilol in reducing risk of COVID-19 are highly

needed.

Discussion

Recent studies indicated that SARS-CoV-2 infection was detected in multiple organs in addi-

tion to lungs, including heart, pharynx, liver, kidneys, brain, and intestine [70,87]. SARS-CoV-

2 RNA was also found in patient stool [88]. Therefore, investigation of how SARS-CoV-2 asso-

ciates with other diseases could help reveal and understand its impact on systems and organs

in addition to lungs. In this study, we systematically evaluated 64 diseases across 6 categories

for their potential manifestations with COVID-19. We started with assembling and character-

izing 5 SARS-CoV-2 datasets representing different cellular event levels including transcrip-

tome, proteome, and interactome. Using state-of-the-art network proximity measurement, we

identified broad disease manifestations (such as autoimmune, neurological, and pulmonary;

Fig 4A) associated with COVID-19. Although the number of genes associated with each dis-

ease is different (S4 Table), we did not notice any significant bias in the network proximity Z
scores by different number of genes (S14 Fig). Retrospective meta-analyses using the clinical

data of 4,973 patients across 34 studies confirmed our network-based findings.

We further investigated the molecular determinants of the association of COVID-19 and

the comorbidities by multimodal analyses of large-scale bulk and single-cell transcriptomic

profiles, metabolomic data, and the PPI networks. We identified the cell types that have the

highest expression levels of ACE2 and TMPRSS2: the lung AT2 cells, secretory bronchial epi-

thelial cells, and absorptive enterocytes in the ileum. We examined the expression of asthma-

and IBD-associated genes in their relevant cell types. Combining these findings with the results

of differential expression analysis, network analysis, and differential metabolites, we identified

several key pathogenic pathways for asthma (including IRAK3 and ADRB2) that can be altered

by the viral infection.

For asthma, our network-based findings suggest several possible shared pathobiological

pathways associated with COVID-19. First, SARS-CoV-2 infection might alter the expression

of several key inflammatory genes: IRAK3, which is associated with asthma [68,89,90]; ADRB2,

which is an essential genetic factor for asthma [69,91]; and NFKBIA, which shows critical tran-

scriptional responses in childhood asthma [92]. These genes show high expression in secretory

3 and AT2 cell types, suggesting a higher susceptibility to be impacted by SARS-CoV-2 infec-

tion through ACE2. SARS-CoV-2 increased the expression of IRAK3 and ADRB2, which lead

to a higher risk of asthma (Fig 5B). Second, decreased levels of L-arginine and L-citrulline

were found in SARS-CoV-2-infected patients [62], while it has been shown that higher levels

of these metabolites are protective against asthma [61]. L-arginine can be converted to nitric

oxide by the nitric oxide synthases, and it was shown that nitric oxide protects against viral

infection through multiple potential mechanisms [93].

Our network proximity results show a strong connection between IBD and COVID-19 (Fig

4A). We have also shown that IBD-related pathways can potentially be affected by SARS-CoV-

2 infection (Fig 6B). However, we should also note that the meta-analysis does not show a
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significant risk ratio of digestive system disease in COVID-19 patients (Fig 3B), while 2 specific

symptoms, abdominal pain and diarrhea, showed increased risks in patients with severe

COVID-19 (Fig 6A). Digestive system disease covers a broad range of gastrointestinal diseases.

Future studies are needed to reveal and validate the associations of COVID-19 and individual

gastrointestinal diseases.

Finally, we computationally prioritized nearly 3,000 FDA-approved/investigational drugs

for their potential anti-SARS-CoV-2 effects using network proximity measurement and GSEA

analysis. A list of 34 repurposable drugs with their reported antiviral profiles are highlighted,

among which 8 drugs are currently in ongoing COVID-19 clinical trials (Fig 7). We further

explored drug–disease outcome relationships for melatonin using a large-scale COVID-19

patient registry database. We found that among individuals who received testing for SARS-

CoV-2, melatonin usage was associated with a 28% and 52% reduced likelihood of a positive

laboratory test result for SARS-CoV-2 in the all combined population (Fig 8A) and black

Americans (Fig 8C), respectively, after adjusting for age, sex, race, smoking, and various dis-

ease comorbidities. Using user active comparator design, we further found that melatonin

usage was associated with a reduced likelihood of a positive laboratory test result for SARS-

CoV-2 compared to use of ARBs and ACEIs as well. Exogenous melatonin may be of benefit

in older patients with COVID-19, given the aging-related reduction of endogenous melatonin

and the greater vulnerability of older individuals to mortality from SARS-CoV-2 [94], the latter

potentially due to declining immunity, i.e., immunosenescence [95]. Moreover, melatonin

suppresses NLRP3 inflammasome activation induced by cigarette smoking and attenuates pul-

monary inflammation [96], not only via reduction of NF-κB p65 and tumor necrosis factor-α
(TNF-α) expression, but also via increase in anti-inflammatory cytokines such as IL-10 or IL-

6, which can also have anti-inflammatory effects [97,98]. Thus, large-scale observational stud-

ies and randomized controlled trials are needed to validate the clinical benefit of melatonin for

patients with COVID-19. It would be important, however, that the trials be designed with the

understanding of the mechanism of the drug to be repurposed. For example, it would be obvi-

ous that drugs that decrease viral entry, e.g., part of melatonin’s action, would be beneficial in

preventing infection or very early in the COVID-19 course, but may be inconsequential when

utilized in severe or end-stage infection. Several randomized controlled trials are being per-

formed to test the clinical benefits of melatonin in patients with COVID-19 (ClinicalTrials.gov

NCT04409522 and NCT04353128). In addition, the Selective Estrogen Modulation and Mela-

tonin in Early COVID-19 (SENTINEL) trial is underway to test the combination therapy [99]

of melatonin with toremifene (an approved selective estrogen receptor modulator [100]) for

patients with early and mild COVID-19 (ClinicalTrials.gov NCT04531748).

We acknowledge several potential limitations. First, although we integrated data from mul-

tiple sources to build the human interactome and the drug–target network, they are still

incomplete. Second, this study relied on the SARS-CoV-2 target host gene/protein datasets,

and their quality and literature bias may influence the performance of our network analysis.

The genes in these datasets can differ significantly. DEGs identified from transcriptomics pro-

files can be very different from DEPs from proteomics data by multiple factors, which may

influence the results of network proximity analysis as well. These datasets were from different

cell types, and the COVID-19-relevant cell types may not be representative. PPIs and DEGs/

proteins in different cell lines or tissues may contain false positives as well. Two recent studies

suggested that chloroquine or hydroxychloroquine showed ideal antiviral activities in African

green monkey kidney cells (VeroE6) but not in a model of reconstituted human airway epithe-

lium [101] or the TMPRSS2-positive lung cell line Calu-3 [102]. These studies showed that cell

lines mimicking important aspects of respiratory epithelial cells should be used when analyz-

ing the antiviral activity of drugs targeting host cell functions. In the original SARS2-PPI
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dataset based on the VeroE6 cell line, a key PPI for ACE2–spike protein was absent. We pos-

ited that combining transcriptomics profiles and proteomics data derived from diverse

COVID-19-relevant cell lines or tissues may provide complementary molecular information

to overcome the high disease heterogeneities of COVID-19 [103]. In addition, through creat-

ing a pan-coronavirus PPI network by combining HCoV-PPI and SARS2-PPI, we aimed to

identify broad-spectrum antiviral medications for SARS-CoV-2—and other emerging corona-

viruses, if broadly applied—with our network medicine framework.

Third, our method can only apply to diseases with well-characterized genetic information

and may not be applicable for diseases that lack such information, such as rare diseases (i.e.,

cerebral palsy or mental conditions). Potential literature bias of disease-associated genes and

the human interactome may also influence our findings. For example, well-studied genes asso-

ciated with both COVID-19 and other diseases may explain the similarity of COVID-19 with

other diseases, while the understudied genes associated with both diseases may not be uncov-

ered. Fourth, the patient data analysis is retrospective, may have selection bias, and is limited

for commonly used drugs due to patient data availability. Dose and period of the medications

were also missing in our current COVID-19 patient registry database. Although we performed

multiple types of PS matching, residual confounding is possible despite high-dimensional

covariate adjustment. Carvedilol use did not show a significant advantage compared to use of

ARBs (OR = 0.90, 95% CI 0.65–1.25) or ACEIs (OR = 0.73, 95% CI 0.53–1.01) after adjusting

for age, sex, race, smoking history, and multiple disease comorbidities (Fig 8B). In addition,

carvedilol was not significantly associated with a reduced likelihood of a positive laboratory

test result for SARS-CoV-2 among 5 subgroup analyses (S12 and S13 Figs). There are 2 possi-

ble explanations: (1) the small number of patients using carvedilol (Table 1) may yield insuffi-

cient statistical power for the current observational study or (2) carvedilol may only reduce the

likelihood of a positive laboratory test result for SARS-CoV-2 for patients having existing

health conditions, such as hypertension. Replication of the associations and causal inference

using large-scale independent cohorts may rule out treatment effect heterogeneity and possible

confounding further. Finally, although we made the intriguing observation that the use of mel-

atonin was much less prevalent in individuals testing positive for SARS-CoV-2, we recognize

that many asymptomatic or minimally symptomatic persons with the virus were not tested

and, therefore, their use of melatonin was not evaluable; melatonin use in this latter group

might also have been high. It should therefore be noted that all drugs we identified as thera-

peutic candidates in this study must be validated using experimental assays and randomized

clinical trials before they can be recommended for use in patients with COVID-19.

Recent studies have suggested that COVID-19 is a systemic disease that has impacts on

multiple cell types, tissues, and organs [104]. Our network methodology could potentially be

improved by using tissue-specific genes for the diseases and incorporating directionality of the

gene/protein biological effects. We recomputed network proximity using only genes that have

a tissue specificity� 0 in the associated disease: We found overall consistent results (S15 Fig)

compared to lung-specific network analysis (Fig 4A). For example, IBD achieved significant

proximities across all 5 SARS-CoV-2 gene/protein datasets in Fig 4A. When using genes with

tissue specificity� 0, IBD showed the same results in small intestine, but not in colon (S15

and S16 Figs). Type 2 diabetes showed significant network proximities across all 5 SARS-CoV-

2 gene/protein datasets using pancreas-specific genes (S15 Fig), which is consistent with recent

clinical observations [105]. Yet, the GTEx database used in this study was from healthy tissues,

which may not represent the gene expression state in the disease condition. In addition, the

disease-associated genes used this study were based on somatic or germline genetic evidence.

For example, we did not observe significant association of COVID-19 with cancer. One possi-

ble explanation is that cancer is a more somatic-mutation-driven, chronic disease than
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COVID-19, which involves an acute immune response and inflammation-driven heteroge-

neous disease.

We also experimented with incorporating the directionality of the gene expression using

the 2 asthma expression datasets and SARS2-DEG, since the direction of the DEGs are avail-

able in those 2 datasets. We found more significant network proximities and smaller Z scores

between asthma and COVID-19 when using the up- or down-expressed genes separately (S17

Fig), suggesting that incorporating the directionalities of genes/proteins may improve the per-

formance of network analysis. A previous study has shown that integration of the directional-

ity of the human interactome didn’t change the results of network proximity measurement

[49]. Owing to the lack of a systematic human interactome with well-documented directionali-

ties, and without comprehensive information about whether a viral protein activates or inhib-

its a host protein, we didn’t test the influence of the directionality of proteins and the human

interactomes on our findings in a systematic way. Therefore, future work is needed to explore

well-documented directionalities in human interactome network analysis that integrates pre-

cise perturbation effects of disease-causing variants and viral proteins.

In conclusion, our study provides a powerful, integrative network medicine strategy for

advancing understanding of COVID-19-associated comorbidities and facilitating the identifi-

cation of drug candidates for COVID-19. This approach also promises to address the transla-

tional gap between genomic studies and clinical outcomes, which poses a significant problem

when rapid development of effective therapeutic interventions is critical during a pandemic.

From a translational perspective, if broadly applied, the network medicine tools applied here

could prove helpful in developing effective treatment strategies for other complex human dis-

eases as well, including other emerging infectious diseases.

Materials and methods

A list of the sources of all the datasets used in this study can be found in S1 Table.

Building the datasets of SARS-CoV-2 target host genes/proteins

We assembled 4 SARS-CoV-2 datasets of target host genes/proteins: (1) 246 DEGs in human

bronchial epithelial cells infected with SARS-CoV-2 [21] (GSE147507), denoted as SARS2-

DEG; (2) 293 DEPs in human Caco-2 cells infected with SARS-CoV-2 [22], denoted as

SARS2-DEP; (3) 134 strong literature-evidence-based pan-human coronavirus target host pro-

teins from our recent study [30] with 15 newly curated proteins, denoted as HCoV-PPI; and

(4) 332 proteins involved in PPIs with 26 SARS-CoV-2 viral proteins identified by affinity

purification–mass spectrometry (AP-MS) [8], denoted as SARS2-PPI. Finally, due to the inter-

actome nature of HCoV-PPI and SARS2-PPI, we combined these datasets as the fifth SARS-

CoV-2 dataset, which has 460 proteins and is denoted as PanCoV-PPI. Details of these datasets

can be found in S2 Table.

SARS2-DEG. In the original study, the primary human bronchial epithelial cells were

infected with SARS-CoV-2 for 24 hours. The transcriptome profiles of infected (3 replicates)

and uninfected cells (3 replicates) were characterized, and the fold change (FC) and FDR for

each gene were calculated by DESeq2 and provided in the original study. We applied a cutoff

of |log2FC|> 0.5 and FDR < 0.05 to identify the DEGs.

SARS2-DEP. As described in the previous study [22], human Caco-2 cells were infected

with SARS-CoV-2 for up to 24 hours. Proteomics assays of the infected and uninfected cells

were measured at 24 hours in triplicates. We used the results at 24 hours, as the original study

showed most DEPs at 24 hours. The P values were computed using 2-sided unpaired Student t
tests with equal variance assumed in this study. We converted the P value to FDR using the
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“fdrcorrection” function in the Python package statsmodels v0.11.1 and used a cutoff of

FDR< 0.05 to identify the DEPs.

Collection of 4 additional virus–host gene/protein networks

To characterize the SARS-CoV-2 datasets, we downloaded 4 virus–host gene/protein networks

from previous studies for comparison: (1) 900 virus–host interactions identified by gene-trap

insertional mutagenesis connecting 10 other viruses and 712 host genes [35]; (2) 2,855 virus–

host interactions identified from RNAi connecting 2,443 host genes and 55 pathogens [35]; (3)

579 host proteins mediating translation of 70 innate immune-modulating viORFs [36]; and (4)

1,292 host genes identified by Co-IP+LC/MS that mediate influenza–host interactions [37].

All details for these 4 virus–host gene/protein networks are provided in S3 Table.

Building the disease gene profiles

We compiled the disease-associated gene sets from various sources. All databases were

accessed on March 26, 2020.

Cancer. We defined a driver gene as a gene that had significantly enriched driver muta-

tions based on whole-genome or whole-exome sequencing data or reported experimental data

from the Cancer Gene Census [42,43] or the original publications from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/). The pan-cancer driver genes were retrieved

from the Cancer Gene Census [42,43]. Driver genes for individual cancer types were from a

previous study [44].

Mendelian disease genes (MDGs). A set of 2,272 MDGs were retrieved from the Online

Mendelian Inheritance in Man (OMIM) database [106].

Orphan disease-causing mutant genes (ODMGs). A set of 2,124 ODMGs were retrieved

from a previous study [107].

Cell cycle genes. A set of 910 human cell cycle genes were downloaded from a previous

study in which they were identified by a genome-wide RNAi screening [108].

Innate immune genes. A set of 1,031 human innate immune genes were collected from

InnateDB [109].

Genes associated with autoimmune, pulmonary, neurological, cardiovascular, and met-

abolic diseases. The disease-associated genes/proteins were extracted from HGMD [45].

HGMD is a well-documented database, and we downloaded the whole database for data

analysis and extraction using well-documented disease ontology terms [46]. We defined a

disease-associated gene as a gene that has at least 1 disease-associated mutation in original

publications provided in HGMD. The details, including the sources, number of genes,

mutations associated with the disease, and terms used to identify diseases in HGMD, are

provided in S4 Table.

Functional enrichment analysis

We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)

biological process enrichment analyses to reveal the biological relevance and functional path-

ways of the 5 SARS-CoV-2 datasets. All functional enrichment analyses were performed using

Enrichr [110]. An overview of the virus infection-related pathways and ontology terms shared

by 1 or more datasets was generated by searching for significant pathways or terms

(FDR< 0.05). The enrichment analysis results for the 5 SARS-CoV-2 gene/protein sets can be

found in S1–S5 Figs.

PLOS BIOLOGY Network medicine for COVID-19

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000970 November 6, 2020 26 / 43

https://portal.gdc.cancer.gov/
https://doi.org/10.1371/journal.pbio.3000970


Selective pressure and evolutionary rate characterization

We calculated the dN/dS ratio [111] and the evolutionary rate ratio [112] as described in our

previous study [113]. A dN/dS ratio below, equal to, or above 1 suggests purifying selection,

neutral evolution, or positive Darwinian selection, respectively [114]. The evolutionary rate

ratio was computed using the criterion that a ratio> 1 indicates a fast rate and a ratio< 1 indi-

cates a slow rate [112]. The dN/dS and evolutionary rate ratios of the genes in the 5 SARS-

CoV-2 datasets and 4 additional virus gene/protein sets can be found in S2 and S3 Tables.

Tissue specificity analysis

The RNA-Seq data (transcripts per million [TPM]) of 33 tissues from the GTEx V8 release

(accessed on March 31, 2020; https://www.gtexportal.org/home/) were downloaded. Genes with

count per million (CPM)� 0.5 in over 90% of samples in a tissue were considered tissue-expressed

genes, and otherwise tissue-unexpressed. To quantify the expression specificity of gene i in tissue t,
we calculated the mean expression Ei and the standard deviation σi of a gene’s expression across all

considered tissues. The significance of gene expression specificity in a tissue is defined as

zit ¼
Eit � Ei

si
ð1Þ

Risk ratio analysis for COVID-19 patients

PubMed, Embase, and medRxiv databases were searched for publications as of April 25, 2020

(S18 Fig). The search was limited to articles in English describing the demographic and clinical

features of SARS-CoV-2 cases. We used the search term (“SARS-COV-2” OR “COVID-19”

OR “nCoV 19” OR “2019 novel coronavirus” OR “coronavirus disease 2019”) AND (“clinical

characteristics” OR “clinical outcome” OR “comorbidities”). Only research articles were

included; reviews, case reports, comments, editorials, and expert opinions were excluded.

Three criteria were used to select studies from a total of 1,054 initial hits: (1) studies that had

�20 COVID-19 patients; (2) studies that grouped the outcomes by degree of severity of

COVID-19 (e.g., severe versus non-severe) according to the American Thoracic Society guide-

lines for community-acquired pneumonia; and (3) studies that were from different institu-

tions. Two criteria were used for exclusion: (1) studies that focused on specific populations

(e.g., only death cases, pregnant women, children, or family clusters) and (2) basic molecular

biology research. Finally, 34 studies meeting these criteria were used for further analyses.

We performed random effects meta-analysis to estimate the pooled risk ratio with 95% CI

of 10 comorbidities for patients with severe versus non-severe COVID-19. The Mantel–Haens-

zel method was used to estimate the pooled effects of results [115]. The DerSimonian–Laird

method was used to estimate the variance among studies [116]. Continuous data such as IL-6

levels were transformed to mean and standard deviation first using Wan’s approach based on

sample size, median, and interquartile range [117]. Next, we used the inverse variance method

to estimate the pooled mean difference and estimated the variance among studies using the

DerSimonian–Laird method. We estimated the pooled prevalence of 3 COVID-19 symptoms

(abdominal pain, diarrhea, and dyspnea) and 1 comorbidity (COPD) in 3 COVID-19 patient

groups (severe, non-severe, and all). A random intercept logistic regression model was used to

estimate pooled prevalence, and a maximum-likelihood estimator was used to quantify the

heterogeneity of studies [118]. The tau2 and I2 statistics were calculated for the heterogeneity

among studies. We considered I2� 50% as low heterogeneity among studies, 50%< I2� 75%

as moderate heterogeneity, and I2 > 75% as high heterogeneity. All meta-analyses were con-

ducted using the meta and dmetar packages in the R v3.6.3 platform.
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Building the human protein–protein interactome

A total of 18 bioinformatics and systems biology databases were assembled to build a compre-

hensive list of human PPIs with 5 types of experimental evidence: (1) protein complexes data

identified by a robust AP-MS methodology collected from BioPlex V2.016 [119]; (2) binary

PPIs tested by high-throughput yeast-two-hybrid (Y2H) systems from 2 publicly available

high-quality Y2H datasets [120,121] and 1 in-house dataset [32]; (3) kinase–substrate interac-

tions identified by literature-derived low-throughput or high-throughput experiments from

Kinome NetworkX [122], Human Protein Resource Database (HPRD) [123], PhosphoNet-

works [124], PhosphoSitePlus [125], DbPTM 3.0 [126], and Phospho.ELM [127]; (4) signaling

networks identified by literature-derived low-throughput experiments from SignaLink 2.0

[128]; and (5) literature-curated PPIs identified by AP-MS, Y2H, literature-derived low-

throughput experiments, or protein 3D structures from BioGRID [129], PINA [130], INstruct

[131], MINT [132], IntAct [133], and InnateDB [109]. Inferred PPIs based on gene expression

data, evolutionary analysis, and metabolic associations were excluded. Genes were mapped to

their Entrez ID based on the NCBI database [134]. The official gene symbols were based on

GeneCards (https://www.genecards.org/). The final human protein–protein interactome used

in this study included 351,444 unique PPIs (edges or links) connecting 17,706 proteins

(nodes). Detailed descriptions for building the human protein–protein interactome are pro-

vided in our previous studies [31–33,135]. An overview of the human protein–protein interac-

tome can be found in S19 Fig.

Network proximity measure

We used the “closest” network proximity measure throughout this study. For 2 gene/protein

sets A and B, their closest distance dAB was calculated as

hdABi ¼
1

kAk þ kBk

X

a2A

minb2Bdða; bÞ þ
X

b2B

mina2Adða; bÞ
� �

ð2Þ

where d(a,b) is the shortest distance of a and b in the human interactome. To evaluate the sig-

nificance, we performed a permutation test using randomly selected proteins from the whole

interactome that were representative of the 2 protein sets being evaluated in terms of their

degree distributions. We then calculated the Z score as

ZdAB
¼

dAB �
�dr

sr
ð3Þ

where �dr and σr were the mean and standard deviation of the permutation test. All network

proximity permutation tests in this study were repeated 1,000 times.

Network-based comorbidity analysis

To reveal potential COVID-19 comorbidities, we computed the network proximity of the dis-

ease-associated proteins for each disease and the 5 SARS-CoV-2 datasets. SARS-CoV-2 target

proteins with a non-negative tissue specificity in lung were used in the computation. The

degree enrichment for protein i in a subnetwork was calculated as

ei ¼
di=n
Di=N

ð4Þ

where di is the degree of i in the subnetwork, n is number of nodes in the subnetwork, Di is the
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degree in the complete human protein interactome, and N is the total number of nodes in the

interactome. The log10 ei value is reported.

We also computed the eigenvector centrality [136] of the nodes to evaluate their influence

in the network topology while also considering the importance of their neighbors. A high

eigenvector centrality value suggests that the node is connected to many other nodes with high

eigenvector centrality scores as well. The computation was performed using Gephi 0.9.2

(https://gephi.org/).

Bulk and single-cell RNA-Seq data analysis

A list of the datasets used in this study can be found in S1 Table.

Bulk RNA-Seq datasets for asthma patients were retrieved from the NCBI GEO database

(https://www.ncbi.nlm.nih.gov/geo/) using the accession numbers GSE63142 [66] and

GSE130499 [67]. Differential expression of 3 comparisons—severe versus control, mild versus

control, and severe versus mild—were performed using the GEO2R function (https://www.

ncbi.nlm.nih.gov/geo/geo2r/) [137]. In GSE63142 [66], bronchial epithelial cells of 27 control

samples, 72 mild asthma samples, and 56 severe asthma samples were obtained by bronchos-

copy with endobronchial epithelial brushing. In GSE130499 [67], bronchial epithelial cells of

38 control samples, 72 mild asthma samples, and 44 severe asthma samples were available by

bronchoscopy with endobronchial epithelial brushing as well. The differential expression anal-

ysis was performed by defining the groups in GEO2R first, then by selecting the 2 groups to

compare. Genes with |log2FC|> 0.5 and FDR< 0.05 were considered significantly differen-

tially expressed.

Single-cell data of normal lung and primary human bronchial epithelial cells were down-

loaded from https://data.mendeley.com/datasets/7r2cwbw44m/1 [14]. These datasets contain

39,778 lung cells and 17,451 bronchial epithelial cells with cell type annotated. GSE134809 [72]

was downloaded from the NCBI GEO database. This dataset contains 67,050 inflamed and

uninflamed cells from the ileal samples of 8 patients with Crohn disease. Qualifying cells based

on the criteria from the original paper were used for the single-cell analysis. We used the cell

type gene markers from a previous study [72] (CD3D, CD2, CD7, TNFRSF17, MZB1, BANK1,

CD79B, CD22, MS4A1, HLA-DRB1, HLA-DQA1, LYZ, IL3RA, IRF7, GZMB, LILRA4,

CLEC4C, TPSAB1, CMA1, KIT, PLVAP, VWF, LYVE1, CCL21, COL3A1, COL1A1, ACTA2,

GPM6B, S100B) for the non-epithelial cells. We used markers from Zhang et al. [15] (DEFA5,

REG3A, DEFA6, SOX4, CDCA7, KIAA0101, TOP2A, MKI67, HMGB2, STMN1, SPINK4,

ITLN1, REG4, CLCA1, FCGBP, HMGA1, EIF3F, ETHE1, ADH1C, C1QBP, RBP2, APOB,

APOC3, APOA1, APOA4) for the epithelial cells. The expression of these markers in the cells

can be found in S20 and S21 Figs. All single-cell data analyses and visualizations were per-

formed with the R package Seurat v3.1.4 [138]. “NormalizeData” was used to normalize the

data. “FindIntegrationAnchors” and “IntegrateData” functions were used to integrate cells

from different samples. UMAP was used as the dimension reduction method for visualization.

Building the metabolite–enzyme network

We built a comprehensive metabolite–enzyme network by assembling data from 4 commonly

used metabolism databases: KEGG [139], Recon3D [140], the Human Metabolic Atlas (HMA)

[141], and the Human Metabolome Database (HMDB) [142]. The metabolite–enzyme net-

work contains 60,822 records of 6,725 reactions among 3,808 metabolites and 3,446 genes.

Four types of enzyme functions were included in the network: biosynthesis, degradation,

transformation, and transportation.

PLOS BIOLOGY Network medicine for COVID-19

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000970 November 6, 2020 29 / 43

https://gephi.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://data.mendeley.com/datasets/7r2cwbw44m/1
https://doi.org/10.1371/journal.pbio.3000970


Building the drug–target network

To evaluate whether a drug is closely associated with SARS-CoV-2 target proteins in the

human interactome, we gathered the drug–target interaction information from several data-

bases: DrugBank database (v4.3) [143], Therapeutic Target Database (TTD) [144], PharmGKB

database, ChEMBL (v20) [145], BindingDB [146], and the IUPHAR/BPS Guide to Pharmacol-

ogy [147]. We included the interactions that have binding affinities Ki, Kd, IC50, or EC50�

10 μM and a unique UniProt accession number with “reviewed” status. The details for building

the experimentally validated drug–target network can be found in our recent studies [31–33].

Network-based drug repurposing

We computed the closest network proximity as described before for 2,938 FDA-approved or

investigational drugs and the 5 SARS-CoV-2 datasets. For prioritization, we ranked the drugs

by their distance to the datasets (D< 2, network distance using the closest measure) and Z
score (Z< −1.5) from the network proximity analysis. The antiviral profiles of the highlighted

drugs were manually curated. COVID-19-related clinical trials were retrieved on August 28,

2020.

Gene set enrichment analysis (GSEA)

The GSEA was conducted as described in our recent work [30] as an additional source of evi-

dence for drug repurposing. Briefly, for each drug and coronavirus target gene set, we com-

puted an enrichment score (ES) to indicate whether the drug can reverse the effect of

SARS-CoV-2 at the transcriptome or proteome level. Gene expression profiles for the drugs

were retrieved from the Connectivity Map (CMAP) database [148]. Five gene sets were evalu-

ated: (1) the DEGs in human bronchial epithelial cells infected with SARS-CoV-2 [21]

(GSE147507); (2) the DEPs in human Caco-2 cells infected with SARS-CoV-2 [22]; (3 and 4) 2

transcriptome datasets of SARS-CoV-1-infected samples from patient’s peripheral blood [149]

(GSE1739) and Calu-3 cells [150] (GSE33267), respectively; and (5) the DEGs in MERS-CoV-

infected Calu-3 cells [151] (GSE122876).

The ES was calculated for up- and down-regulated genes separately first. The overall ES was

calculated as

ES ¼
ESup � ESdown; sgnðESupÞ 6¼ sgnðESdownÞ

0; else
ð5Þ

(

where ESup and ESdown were calculated using aup/down and bup/down as

a ¼ max
1�j�s

j
s
�

VðjÞ
r

� �

ð6Þ

b ¼ max
1�j�s

VðjÞ
r
�

j � 1

s

� �

ð7Þ

j = 1,2,� � �,s were the genes in the gene sets sorted in ascending order by their rank in the drug

profiles. V(j) indicates the rank of gene j, where 1�V(j)�r, with r being the number of genes

from the drug profile. Then, ESup/down was set to aup/down if aup/down>bup/down, and was set to

−bup/down if bup/down>aup/down. A permutation test was performed to evaluate the significance.

Drugs were prioritized and selected if ES> 0 and P< 0.05.
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Patient data validation of the network-identified drugs using a COVID-19

registry

We used institutional-review-board-approved COVID-19 registry data, including 26,779 indi-

viduals (8,274 SARS-CoV-2 positive) tested during March 8 to July 27, 2020, from the Cleve-

land Clinic Health System in Ohio and Florida. The pooled nasopharyngeal and

oropharyngeal swab specimens were tested. SARS-CoV-2 positivity was confirmed by reverse

transcription–polymerase chain reaction assay in the Cleveland Clinic Robert J. Tomsich

Pathology and Laboratory Medicine Institute. All SARS-CoV-2 testing was authorized by the

FDA under an Emergency Use Authorization and complied with the guidelines established by

the Centers for Disease Control and Prevention. Data include COVID-19 test results, baseline

demographic information, medications, and all recorded disease conditions. We conducted a

series of retrospective case–control studies with a new user active comparator design to test

the drug–outcome relationships for COVID-19. Patients were actively taking the evaluated

drugs (carvedilol and melatonin) at the time of testing. Data were extracted from electronic

health records (EPIC Systems) and were manually checked by a study team trained on uniform

sources for the study variables. We collected and managed all patient data using REDCap elec-

tronic data capture tools. The exposures of drugs (including carvedilol and melatonin) were

used as recorded in the medication list in the electronic medical records at the time of testing

for SARS-CoV-2. A positive laboratory test result for SARS-CoV-2 was used as the primary

outcome. PS was used to match patients to reduce various confounding factors. Four models,

from less to more stringent in terms of patient matching and OR adjustment, were performed:

(1) model 1 was matched using age, sex, race, and smoking without adjustment for the OR; (2)

model 2 was matched using age, sex, race, and smoking, and the OR of COVID-19 was

adjusted by age, sex, race, and smoking; (3) model 3 was matched using age, sex, race, smok-

ing, coronary artery disease, diabetes, hypertension, and COPD without adjustment for the

OR; and (4) model 4 was matched using age, sex, race, smoking, coronary artery disease, dia-

betes, hypertension, and COPD, and the OR of COVID-19 was adjusted by age, sex, race,

smoking, coronary artery disease, diabetes, hypertension, and COPD. All analyses were con-

ducted using the matchit package in the R v3.6.3 platform.

Statistical analysis and network visualization

Statistical tests were performed with the Python package SciPy v1.3.0 (https://www.scipy.org/).

P< 0.05 was considered statistically significant throughout this study. Networks were visual-

ized using Gephi 0.9.2 (https://gephi.org/).

Ethics statement

Procedures follow institutional guidelines for research on the COVID-19 registry database and

were approved by the Cleveland Clinic Foundation Institutional Review Board.
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S4 Data. Fig 5 data.
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S5 Data. Fig 6 data.
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S6 Data. Fig 7 data.

(XLSX)

S7 Data. S1–S5 Figs data.
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S8 Data. S6 Fig data.

(XLSX)

S9 Data. S7 Fig data.

(XLSX)

S10 Data. S14 Fig data.

(XLSX)

S11 Data. S15 Fig data.

(XLSX)

S1 Fig. Functional enrichment analysis for SARS2-DEG. In total, 246 differentially expressed

genes (DEGs) in human bronchial epithelial cells infected with SARS-CoV-2 were obtained

from the NCBI GEO database with the accession number GSE147507, denoted as SARS2-

DEG. The data underlying this figure can be found in S7 Data.

(PDF)

S2 Fig. Functional enrichment analysis for SARS2-DEP. In total, 293 differentially expressed

proteins (DEPs) in human Caco-2 cells infected with SARS-CoV-2 were obtained from Boj-

kova et al. [22], denoted as SARS2-DEP. The data underlying this figure can be found in S7

Data.

(PDF)

S3 Fig. Functional enrichment analysis for HCoV-PPI. This dataset contains 134 strong lit-

erature-evidence-based pan-human coronavirus target host proteins from Zhou et al. [30]

with 15 newly curated proteins, denoted as HCoV-PPI. The data underlying this figure can be

found in S7 Data.

(PDF)

S4 Fig. Functional enrichment analysis for SARS2-PPI. This dataset contains 332 proteins

involved in protein–protein interactions with 26 SARS-CoV-2 viral proteins identified by

affinity purification–mass spectrometry from Gordon et al. [8], denoted as SARS2-PPI. The

data underlying this figure can be found in S7 Data.

(PDF)

S5 Fig. Functional enrichment analysis for PanCoV-PPI. Due to the interactome nature of

HCoV-PPI and SARS2-PPI, we combined these datasets as the fifth SARS-CoV-2 dataset,

which has 460 proteins and is denoted as PanCoV-PPI. The data underlying this figure can be

found in S7 Data.

(PDF)

S6 Fig. Characteristics of the 4 SARS-CoV-2 target datasets. Node degree (blue), dN/dS
ratio (orange), evolutionary ratio (green), and lung expression specificity (purple) are shown
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for each dataset. Grey areas indicate mean ± standard deviation of 100 repeats using randomly

selected genes. The data underlying this figure can be found in S8 Data.

(PDF)

S7 Fig. Chronic obstructive pulmonary disease and COVID-19. (A) The risk of chronic

obstructive pulmonary disease (COPD) is increased in severe COVID-19 patients. (B) Subnet-

work shows the proteins potentially involved in the interaction between COPD and COVID-

19. The data underlying this figure can be found in S9 Data.

(PDF)

S8 Fig. Asthma and COVID-19. (A) The risk of dyspnea is increased in patients with severe

COVID-19. (B) UMAP visualization for human bronchial epithelial cells. (C and D) Expres-

sion levels of ACE2 across 14 cell types. (E and F) Expression levels of TMPRSS2 across 14 cell

types. (G) UMAP visualization for lung cells. (H and I) Expression levels of ACE2 across 9 cell

types. (J and K) Expression levels of TMPRSS2 across 9 cell types. The single-cell data with cell

type annotation were retrieved from Lukassen et al. [14], which contains 39,778 lung cells and

17,451 bronchial epithelial cells.

(PDF)

S9 Fig. The expression of asthma genes and SARS-CoV-2 targets. The expression levels of

the genes from the asthma–COVID-19 subnetwork in bronchial epithelial cells (A) and lung

cells (B) are shown.

(PDF)

S10 Fig. Risk ratios for abdominal pain and diarrhea in COVID-19 patients. Abdominal

pain (A) and diarrhea (B) have increased risks in patients with severe COVID-19.

(PDF)

S11 Fig. Inflammatory bowel disease and COVID-19. (A) UMAP visualization of non-epi-

thelial cells from the ileal tissues of patients with Crohn disease. (B and D) The expression of

ACE2 in the non-epithelial cells in (A). (C and E) The expression of TMPRSS2 in the non-epi-

thelial cells in (A). (F) UMAP visualization of epithelial cells from the ileal tissues of patients

with Crohn disease. (G and I) The expression of ACE2 in the epithelial cells in (F). (H and J)

The expression of TMPRSS2 in the epithelial cells in (F). (K and L) The expression levels of

ACE2 and TMPRSS2 in inflamed versus uninflamed ileal absorptive enterocytes in Crohn dis-

ease patients. The single-cell data were retrieved from Martin et al. [72], which contains 67,050

inflamed and uninflamed cells from the ileal samples of 8 patients with Crohn disease.

(PDF)

S12 Fig. Patient-based validation of drug repurposing for COVID-19 using 3 different dis-

ease subgroups. The disease subgroups are (A) asthma, (B) diabetes, and (C) hypertension.

Four models were evaluated. These models were matched and adjusted using different vari-

ables, as shown in the table. The variable that was used to extract each patient subgroup was

not used for propensity score matching or odds ratio adjustment. ACEI, angiotensin-convert-

ing enzyme inhibitor; ARB, angiotensin II receptor blocker.

(PDF)

S13 Fig. Comparison of the patient validation results of carvedilol use in black Americans

and white Americans. In black Americans, carvedilol use showed a lowered risk of a positive

SARS-CoV-2 test when propensity score was matched with basic variables (age, sex, and smok-

ing).

(PDF)
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S14 Fig. Analysis of the effect of the number of genes associated with diseases on the net-

work proximity Z scores. Each dot represents a disease (Z score versus number of genes). No

significant bias was observed for the number of genes. The maximum R2 is 0.1468 from the

SARS2-PPI dataset. The data underlying this figure can be found in S10 Data.

(PDF)

S15 Fig. Disease manifestations associated with COVID-19 quantified by network proxim-

ity measurement using tissue-specific genes for each disease. The disease-associated genes

were filtered by their tissue specificity. Tissues considered are shown after the disease names.

Only genes with positive specificity were retained for the network analysis. After filtering, dis-

eases with fewer than 5 genes were removed from the evaluation. The data underlying this fig-

ure can be found in S11 Data.

(PDF)

S16 Fig. The subnetwork between the IBD-associated genes, the SARS-CoV-2 virus pro-

teins, and virus target proteins. Node sizes show their tissue specificity in colon.

(PDF)

S17 Fig. Network proximity analysis of asthma and COVID-19 taking into consideration

the directionalities of the differential gene expression. The up- and down-expressed genes

in the 2 asthma datasets (GSE63142 and GSE130499, severe versus control) were computed

against the up- and down-expressed genes from the SARS2-DEG dataset. Overall, the results

show more significant network proximities and smaller Z scores than when the direction is

not considered, as in Fig 4.

(PDF)

S18 Fig. Workflow of clinical study search. We searched PubMed, Embase, and medRxiv

databases for publications as of April 25, 2020, using the search term (“SARS-COV-2” OR

“COVID-19” OR “nCoV 19” OR “2019 novel coronavirus” OR “coronavirus disease 2019”)

AND (“clinical characteristics” OR “clinical outcome” OR “comorbidities”). Only research

articles were included. Several criteria were used to filter the initial 1,054 articles to a final sam-

ple of 34 studies for meta-analyses.

(PDF)

S19 Fig. Overview of the human protein interactome. Cytoscape 3.7.1 was used for the visu-

alization and for generating the statistics. Clustering coefficient (ranges from 0 to 1) measures

the extent to which the nodes in the network tend to cluster together. Network centralization

(ranges from 0 to 1) measures the extent to which the topology resembles a star. Network den-

sity (ranges from 0 to 1) shows how densely the nodes are connected in the network. Network

heterogeneity shows the tendency of the network to contain hub nodes.

(PDF)

S20 Fig. Cell type markers and their expressions in dot plot used to identify the ileal non-

epithelial cells.

(PDF)

S21 Fig. Cell type markers and their expressions in dot plot used to identify the ileal epi-

thelial cells.

(PDF)

S1 File. Network file for the global network of disease manifestations associated with

human coronavirus.

(ZIP)
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