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ABSTRACT 

A novel approach to damage detection in composite structures using hyperspectral image index analysis algorithm with 
neural network modeling employing Weight Elimination Algorithm (WEA) is presented and discussed. The matrix 
band based technique allows the monitoring and analysis of a component’s structure based on correlation between se-
quentially pulsed thermal images. The technique produces several matrices resulting from frame deviation and pixel 
redistribution calculations with ability for prediction. The obtained results proved the technique to be capable of identi-
fying damaged components with ability to model various types of damage under different conditions. 
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1. Introduction 

Advanced layered composite materials are in wide use in 
many applications. Fiber reinforced composites with po- 
lymeric matrices (FRP or laminates) and polymeric sand- 
wich materials, with thin laminate faces and foam or im-
pregnated cores, are examples of such structures. The 
structural design and maintenance of composite struc- 
tures involving these materials need comprehensive 
evaluation and characterization of mechanical properties 
and behavior under different loading conditions, in both 
undamaged and damaged state. The marked inhomoge- 
neity and anisotropy of these materials makes them vul- 
nerable to a variety of damages. For this reason, reliable 
composite structures need adequate NDT/NDE methods 
along the maintenance activities and knowledge of re- 
sidual strength/stiffness or service life estimation linked 
to certain damage patterns. In the end, development of 
damage tolerant materials may be considered a goal to- 
wards further increasing the attractiveness of composite 
materials in building high tech reliable products. 

Pulse Video Thermography (PVT) is a versatile NDT 
inspection method, ready to be used in industrial applica- 
tions assisted by intelligent software for this purpose. 

The subjected material reacts rapidly after the initial 

thermal pulse because the thermal front propagates, by 
diffusion, under the surface and also because of radiation 
and convection losses. The presence of a defect reduces 
the diffusion rate so that when observing the surface 
temperature, defects appear as areas of different tem- 
peratures with respect to surrounding sound areas once 
the thermal front has reached them. Consequently, deeper 
defects will be observed later and with a reduced contrast. 
Such approach is common in the automotive industry. 
Other common applications of the active PVT scheme 
are in quantitative subsurface defect assessment (cracks, 
delaminations, impact damages, disbondings, moisture), 
thermophysical property evaluation; in all kind of indus- 
tries [1-5]. 

In hyperspectral image analysis approach, image fu- 
sion which is the process of combining relevant informa- 
tion from two or more images into a single image takes 
place. The resulting image will be more informative than 
any of the input images. 

The image fusion techniques allow the integration of 
different information sources. The fused image can have 
complementary spatial and spectral resolution character- 
istics. Such techniques are usually used in satellite imag- 
ing; where two types of images are available. The pan- 
chromatic image acquired by satellites is transmitted with 
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the maximum resolution available and the multispectral 
data are transmitted with coarser resolution. This will 
usually be two or four times lower. At the receiving end, 
the panchromatic image is merged with the multispectral 
data to convey more information [6-10]. 

In this paper the hyperspectral approach is adopted to 
detect and analyze damage in composite structures. The 
adaption of the technique is to assume the high resolution 
panachromatic image (PAN) to be the reference image 
while the image of the damaged component to be the low 
resolution multispectral image (MS). 

2. Background 

As composite materials are finding increasing use in 
more demanding applications, requiring a high degree of 
accuracy and reliability, considerable effort is being 
made to define and setup quality control procedures and 
inspection methods. Controlling the quality of raw com- 
posite materials is carried out to detect the following: 

1) Excessive void contents or porosity. 
2) Contamination or foreign particle inclusions 
3) Variation in the degree of resin cure 
4) Inconsistent fiber volume fraction 
5) Dimensional inaccuracies 
6) Poor fiber-matrix bonding 
7) Broken or damaged fibers. 
A composite structure may also be damaged in service 

due to physical damage such as impact or fatigue creep. 
The influence of the environment on a structure due to 
ingress or moisture, exposure to hot and wet conditions 
for over long periods, contamination from oils or fluids 
may also cause damage, like surface abrasion and dents, 
delamination, fiber crack, bonding failure. Such defects 
are all potentially detrimental to the mechanical integrity, 
and consequently to the structural performance of a 
component. The extent to which a defect will affect the 
performance will depend on the geometry of the structure, 
the location and orientation of the defect, the type of ap- 
plied stress field and the working environment. 

Confidence in the application of safety critical struc- 
tural composites in vehicles would be improved if a fast 
accurate method of assessing manufacturing flaws and 
service damage in relation to the structural engineering 
performance was available. A perceived problem with 
composite structures is that internal damage may seri- 
ously weaken a structure yet be undetected due to little 
surface evidence. 

Infrared thermography has been used as an outstanding 
non-destructive testing method. Its basic principle is ex- 
citing an object thermally/mechanically and using infra- 
red camera to monitor changes of the object’s surface 
temperature. The subsurface discontinuities will heat 
diffusion, thus will affect the thermal distribution of the 

surface. Various excitation sources can be used, such as 
cold/hot air, high-powerful lamps and flashes, sonic/ul- 
trasound transducers, and others. There are also different 
heating techniques. Modulated and pulsed heating are 
among the most popular ones. There are two modes for 
thermography, one where the specimen is heated from 
one side, with thermal data is collected from the same 
side, called reflection mode, and the other where the 
specimen is heated from one side, while thermal data is 
collected from the opposite side, called transmission 
mode. 

In almost all application areas, the basic goal of hy- 
perspectral image analysis is to classify or discriminate 
objects. Common problems in the area of hyperspectral 
analysis involving data relevancy include optimal selec- 
tions of wavelength, number of bands, and spatial and 
spectral resolution. Despite the fact that hyperspectral 
image analysis is used to perform index analysis in hy- 
perspectral and multispectral satellite imagery, it is as- 
sumed that it can be used for image comparison of simi- 
lar or processed images, of completely different origin 
[11-15]. 

As there is a need to identify which type of composite 
a component under test belongs to specific category, the 
technique will enable the used algorithm to determine if 
the level of damage or defect in the component is critical 
according to established database that takes into account 
mechanical and physical factors, Testing different com- 
posite structures using Hyperspectral technique and Pulse 
Video Thermography (PVT) is carried out, as hyperspec- 
tral uses different bands with different wavelengths to 
analyze the image results, which enables better recogni- 
tion and classification. This resulted in successful recog- 
nition and component classification obtained with char- 
acterization of tested composite [16-20]. 

3. Method 

While hyperspectral data are very rich in information, 
processing the hyperspectral data poses several chal- 
lenges regarding computational requirements, informa- 
tion redundancy removal, relevant information identifi- 
cation, and modeling accuracy. 

Driven by classification or discrimination accuracy, it 
is expected that, as the number of hyperspectral bands 
increases, the accuracy of classification should also in- 
crease. Nonetheless, this is not always the case in a de- 
veloped model. 

Redundancy in data can cause convergence instability 
of models. Furthermore, variations due to noise in re- 
dundant data propagate through a classification or dis- 
crimination model. The same is true of spectral informa- 
tion that has no relation to the feature being classified in 
the underlying mathematical model. Such information is 
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the same as noise to any statistical model, even if it is 
unique and accurate. 

Thus, processing a large number of hyperspectral 
bands can result in higher classification inaccuracy than 
processing a subset of relevant bands without redun- 
dancy. 

The novel approach of using Hyperspectral technique 
applied to PVT of images coupled with neural networks 
algorithm is an excellent system to overcome the previ- 
ous weakness in image analysis and classification. The 
algorithm used to implement such an approach in classi- 
fying and predicting damage level is carried out using 
Weight Elimination Algorithm (WEA), which is a bidi- 
rectional Bottom-Up, Top-Down pruning algorithm. It 
starts with a simple, then complex network and drives 
unnecessary weights during training towards zero as fol- 
lows: 

1) The neural network is built constructively (Bottom- 
Up), where its size and complexity are modified (Top- 
Down) to achieve a stable network with error below a 
pre-defined initial value. 

2) The training patterns are scaled within controllable 
values to prevent oscillations. 

3) The network is subjected to various patterns during 
training with constant recording of weights and removal 
of any connections that might contribute to bad classifi- 
cation and generalization, then redistribution of removed 
connection weights among the rest of the interneuron 
connections. 

4) The overall number of actively connected neurons 
in the hidden layer is reduced during the process, due to 
weight and bias eliminations. 

5) The WEA makes use of a liability function that is 
based on the error function. By reducing the number of 
connection weights and hence the model’s complexity 
using the weight-elimination liability term, it is expected 
that network’s classification performance to improve. 

The weight-elimination overhead function is shown in 
Equation (1). The liability term in weight-elimination 
minimizes the sum of performance error and the number 
of weights using standard back propagation technique. 

    Total SumSquared LiabilityE W E W E W       (1) 

 TotalE W  is the combined overhead function that in- 
cludes the initial overhead function,  SumSquaredE W
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        (4) 

where 
 : Learning Rate (between 0 and 1) 
W represents the weight vector,   is the weight-re- 

duction factor, and jk  represents the individual weight 
of the neural network model. 

w

The role of the weight-reduction factor is to determine 
the relative importance of the weight-elimination term. 
Larger values of   pushes small weights to further re- 
duce their size. Small values of   will not affect the 
network. 

The scale parameter, epochs n , is a scale parameter 
computed by the WEA, and chosen to be the smallest 
weigh from the last epoch or set of epochs to force small 
weights to zero [21-26]. 

w 

4. Experimental Arrangements 

Figure 1 shows the experimental setup for testing the 
composite structures using PVT. 

An algorithm is used to compute hyperspectral indices 
with emphasis on image deviation. The purpose of the 
used program is to provide such index results in a matrix 
format and apply matrix analysis techniques to indentify 
and classify composites. 

Table 1 shows the types of samples under test. 
Figures 2-5 show composite structure thermal images 

for sample1. 
Figures 6-9 and Figures 10-13 show a set of images 

for samples 2 and 3. 
 

 
 
     

 Camera
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Figure 1. Experimental set up. 
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Table 1. Tested component types. 

Sample Type 

1 GMT (Random fiber) 

2 GMT (Perpendicular fiber) 

3 Woven glass 

4 GMT (Random fiber) 

 

 
Figure 2. Sample 1 thermal image at 4.39 S. 

 

 

Figure 3. Sample 1 thermal image at 13.39 S. 
 

 

Figure 4. Sample 1 thermal image at 18.39 S. 
 

 

Figure 5. Sample 1 thermal image at 23.39 S. 

 

Figure 6. Sample 2 thermal image at 1.34 S. 
 

 

Figure 7. Sample 2 thermal image at 2.34 S. 
 

 

Figure 8. Sample 2 thermal image at 2.39 S. 
 

 

Figure 9. Sample 2 thermal image at 4.24 S. 
 

 

Figure 10. Sample 3 thermal image at 2.39 S. 
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Figure 11. Sample 3 thermal image at 8.09 S. 
 

 

Figure 12. Sample 3 thermal image at 11.49 S. 
 

 

Figure 13. Sample 3 thermal image at 15 S. 

5. Discussion 

Three bands used to analyze the captured thermal images 
with functions applied to compute image indices as 
shown in matrices 5 - 10. 

 
0 75.00 89.10 95.30

Sample1 0 78.73 90.90 96.34.

0 79.54 89.71 93.90

RMSE

 
   
  

   (5) 

 
0 0.54 0.74 0.82

Deviation Sample1 0 0.60 0.76 0.83

0 0.63 0.76 0.82

 
   
  

   (6) 

 
0 72.34 75.25 78.34

Sample2 0 52.00 57.10 61.20

0 30.92 31.90 33.20

RMSE

 
  


 
0 0.12 0.30 0.42

Deviation Sample2 0 0.33 0.35 0.39

0 0.065 0.074 0.082

 
   
  

 (8) 

 
0 239.8 242.9 245.2

Sample3 0 208.6 209.8 210.7

0 163.1 163.4 166.8

RMSE

 
   
  

    (9) 

 
0 0.49 0.94 1

Deviation Sample3 0 0.93 0.99 1

0 0.97 0.99 1

 
   
  

     (10) 

Matrices 6, 8, and 10 show results after applying im- 
age deviation function to the captured images in Figures 
2-13. 

The matrices clearly show an accurate characteristic 
difference between the three samples under test in terms 
of deviation as a function of time. Such differences are 
used in determining the level of damage per component 
specification and threshold specified. 

From matrices (5)-(10), characteristic matrices can be 
produced as shown in matrices (11)-(19). 

1

0 75.00 89.10 95.30
Sample1

0 0.54 0.74 0.82Ch

 
  
 

     (11) 

2

0 78.73 90.90 96.34
Sample1

0 0.60 0.76 0.83Ch

 
  
 

     (12) 

3

0 79.54 89.71 93.90
Sample1

0 0.63 0.76 0.82Ch

 
  
 

     (13) 

1

0 72.34 75.25 78.34
Sample2

0 0.12 0.30 0.42Ch

 
  
 

     (14) 

2

0 52.00 57.10 61.20
Sample2

0 0.33 0.35 0.39Ch

 
  
 

     (15) 

3

0 30.92 31.90 33.20
Sample2

0 0.065 0.074 0.082Ch

 
  
 

     (16) 

1

0 239.8 242.9 245.2
Sample3

0 0.49 0.94 1.00Ch

 
  
 

     (17) 

2

0 208.6 209.8 210.7
Sample3

0 0.93 0.99 1.00Ch

 
  
 

     (18) 

3

0 163.1 163.4 166.8
Sample3

0 0.97 0.99 1.00Ch

 
  
 

      (19) 




   (7) 
Figures 14-16 show how RMSE is affected as a func- 

tion of pulse diffusion over time. The plots clearly indi-  
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Figure 14. Samples 1 RMSE. 
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Figure 15. Sample 2 RMSE. 
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Figure 16. Sample 3 RMSE. 

 
cate that the origin of each one is a different structure. 
This is clearly indicated and supported by the hyperspec- 
tral tri-band outputs from the analyzed images. Under 
normal conditions and with the use of traditional image 
analysis techniques the plots could be interpreted as 
originated from the same sample under different me- 
chanical conditions, however, with the availability of 
more than one band, this is proved otherwise. 

The time period within which a pulse diffused in a 
tested sample depends on its physical characteristics and 
level of damage or defects if any in the sample. The de- 
viation index computed is a strong indicator of how good 
a sample is as deviation values per time transition indi- 
cate how much damage a components might have suf- 
fered. These findings are shown in Figures 17-19. 

Matrices 20 - 22 show a computed time independent 
accumulative RMSE values that are used to characterize 
each tested component and are further used to predict 
other components. A comparison between tested com- 
ponents is shown in Figure 20. 
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Figure 17. Sample 1 hyperspectral deviation. 
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Figure 18. Sample 2 hyperspectral deviation. 
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Figure 19. Sample 3 hyperspectral deviation. 
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Figure 20. Accumalative RMSE time independent com- 
parison between tested samples. 
 

207

. (Sample1) 213

210

Acc RMSE

 
   
  

.

2 .

          (20) 

 
161

. Sample2 12

68

Acc RMSE

 
   
  

          (21) 
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 
561

. Sample3 484

380

Acc RMSE

 
 
  


           (22) 

To validate the obtained results, and that a sample type 
can be identified through its hyperspectral image indices, 
Sample 1 is retested at different time intervals (Identified 
as Sample 4) as shown in Figures 21-24 with image in 
Figure 2 taken as a reference. 
 

 

Figure 21. Sample 4 thermal image at 7.39 seconds. 
 

 

Figure 22. Sample 4 thermal image at 11.23 seconds. 
 

 

Figure 23. Sample 4 thermal image at 13.59 seconds. 
 

 

Figure 24. Sample 4 thermal image at 19.45 seconds. 

The obtained image indices, matrices, and characteris- 
tic matrices are shown in (23)-(27). 

 Sample4

0 70.70 78.33 83.70 90.18

0 74.86 83.19 85.86 91.43

0 77.03 84.20 87.00 90.79

RMSE

 
   
  

          (23) 

 Deviation Sample4

0 0.10 0.32 0.46 0.66

0 0.14 0.39 0.51 0.68

0 0.13 0.40 0.52 0.67

 
   
  

              (24) 

1

0 70.70 78.33 83.70 90.18
Sample4

0 0.10 0.32 0.46 0.66Ch

 
  
 

 (25) 

2

0 74.86 83.19 85.86 91.43
Sample4

0 0.14 0.39 0.51 0.68Ch

 
  
 

 (26) 

3

0 77.03 84.20 87.00 90.79
Sample4

0 0.13 0.40 0.52 0.67Ch

 
  
 

 (27) 

The RMSE time independent characteristic matrix is 
shown in (28) 

 
221

. Sample4 228

245

Acc RMSE

 
 
  


          (28) 

By examining the range of Acc. RMSE for all tested 
samples, it is clear that Sample 4 belongs to Sample 1 
group and in fact it is the same component tested at dif- 
ferent time intervals. 

To support this claim, values in (20), (21), and (22) are 
used to train a Neural Network Model shown in Figure 
25. 

Table 2 shows training and predicted data. From the 
testing data, it is clear that Sample 4 is recognized as in 
the same class as Sample 1, hence, mechanical specifica- 
tions and thresholds and damage limitations are applied 
according to that class, which is assigned class 1. Thus, 
intervals and ranges can be established to determine the 
type of tested component. 

To cover missing input data, a more complicated 
 
Acc.RMSE1 

Acc.RMSE3 

Acc.RMSE2 

Output Class

 

Figure 25. Neural network training model. 
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Table 2. Training and testing data for WEA neural model. 

Training input RMSE Output class 

Sample 1 207, 213, 210 1 

Sample 2 161, 122, 68 2 

Sample 3 561, 484, 380 3 

Testing Input RMSE Predicted output class

Sample 4 221, 228, 245 0.941 ≡ 1 

Data Set 1 140, 100, 50 1.95 ≡ 2 

Data Set 2 480, 400, 340 2.64 ≡ 3 

 
Sample1ChK

SampleNChK

Classification 

 

Figure 26. Comprehensive neural network model. 
 
model could be designed which takes into account all 
hyperspectral bands and more image measuring indices 
to classify and predict. 

Such Neural Network with N-inputs describing char- 
acteristic matrices for Samples is shown in Figure 26. In 
the Figure, K represents number of hyperspectral bands 
per sample. 

6. Conclusion 

Using hyperspectral approach to characterize composite 
components has the very distinct advantage of providing 
more than one band to enable discrimination and classi- 
fication. Such availability of data is very essential to 
judge a component and provides a rich database for an 
intelligent system such as Neural Networks to enable 
prediction and future analysis. 

The advantage of employing Acc. RMSE is to simplify 
the designed Neural Network Model and provide faster 
and easier approach to prediction and classification. 
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