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1. Introduction

N owadays graph theory is one of the most ironic and cited branch of mathematics due to its direct
applications in our daily life. It is widely used in Computer networking and Chemistry. The area of

graph theory related to Chemistry known as Chemical graph theory. This term firstly introduced by Balaban in
book [1] in 1976. After it in 1991, Bonchev discussed more concepts in book [2] and in the book [3] by Trinajstić,
we found a facet ideas about chemical graph theory its uses and applications in our daily life.

In the recent few years, lot of work has been done in chemical graph theory like in [4], Ali et al. calculated
the topological indices of some chemical compounds. Pattabiraman and Suganya in [5] and Kanabur in
[6] calculated topological indices of some well known graphs. The concept of multiplicative topological
indices of graphs was given in [7–10]. In [11], Kahasy et al. calculate atom bond connectivity temperature
index of some important organic compounds. Topological indices of some families of nanostar have been
calculated in [12]. He and Jiang, in [13] calculated degree resistance distance of some trees. Degree-based
multiplicative Atom-bond Connectivity index of some Nanostructures has been discussed [14]. In 2018,
Hussain and Sabar [15] calculated multiplicative topological indices of single-walled titania nanotube. In
[16], Kulli calculated some topological indices of two dimensional Silicate network, Chain silicate network,
six dimensional Hexagonal network, five dimensional Oxide network and four dimensional Honeycomb
network. Recently, Kulli [17] computed some topological indices of Zigzag polyhex nanotubes, Armchair
polyhex nanotubes and Carbon nanocone networks. The main motivation of this work directly came from the
papers [15–17].

2. Preliminaries

Let G (V (G) , E (G)) be a finite, simple and connected graph with V (G) = {v1, v2, . . . , vn} is the set of
vertices and E (G) = {e1, e2, . . . , em} is the set of edges among the vertices of the graph. Consider a geodesic
metric dG : V (G)× V (G) → R defined as dG (u, v) is the number of edges between u and v in shortest path
for any u, v ∈ V(G). All the vertices which are exactly at distance 1 from u ∈ V(G) are neighborhoods of u in
graph G and collection of that vertices is called neighborhood set of u in graph G written as NG (u). Cardinality
of neighborhood set of u ∈ V(G) is called degree of u in graph G and in this paper it is denoted as ξu.
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First multiplicative Zagreb index is defined as:

I I∗1 (G) = ∏
rt∈E(G)

(ξr + ξt) . (1)

Second multiplicative Zagreb index is defined as:

I I2(G) = ∏
rt∈E(G)

(ξr . ξt) . (2)

The multiplicative first and second hyper-Zagreb indices are defined as:

HII1(G) = ∏
rt∈E(G)

(ξr + ξt)
2 . (3)

HII2(G) = ∏
rt∈E(G)

(ξr . ξt)
2 . (4)

First and second multiplicative generalized Zagreb indices are the generalized form of first and second
multiplicative Zagreb indices as well as first and second multiplicative hyper-Zagreb indices. First and second
multiplicative generalized Zagreb indices are defined as:

MZα
1 (G) = ∏

rt∈E(G)

(ξr + ξt)
α . (5)

MZα
2 (G) = ∏

rt∈E(G)

(ξr . ξt)
α . (6)

Multiplicative sum and product connectivity indices are defined as:

SCII(G) = ∏
rt∈E(G)

1√
ξr + ξt

. (7)

PCII(G) = ∏
rt∈E(G)

1√
ξr . ξt

. (8)

The multiplicative atomic bond connectivity index and geometric arithmetic index are defined as:

ABCII(G) = ∏
rt∈E(G)

√
ξr + ξt − 2

ξr . ξt
. (9)

G∗AII(G) = ∏
rt∈E(G)

(
2
√

ξr . ξt

ξr + ξt

)
. (10)

The general multiplicative geometric arithmetic index is defined as:

G∗Aα I I(G) = ∏
rt∈E(G)

(
2
√

ξr . ξt

ξr + ξt

)α

. (11)

Fact 1. Let η1, η2, . . . , ηn be a sequence. Then

n

∏
i=1

(ηi)
γ =

(
n

∏
i=1

ηi

)γ

,

where γ is a constant.
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Proposition 2. Let G (V (G) , E (G)) be any simple, connected and finite graph. Then

SCII(G) = (I I∗1 (G))−
1
2 .

Proof.

SCII(G) = ∏
rt∈E(G)

1√
ξr + ξt

=

(
1√

ξr + ξt

)|E(G)|

= (ξr + ξt)
− |E(G)|

2

=

 ∏
rt∈E(G)

(ξr + ξt)

− 1
2

= (I I∗1 (G))−
1
2 .

Proposition 3. Let G (V (G) , E (G)) be any simple, connected and finite graph. Then

PCII(G) = (I I2(G))−
1
2 .

Proof.

PCII(G) = ∏
rt∈E(G)

1√
ξr . ξt

=

(
1√

ξr . ξt

)|E(G)|

= (ξr . ξt)
− |E(G)|

2

=

 ∏
rt∈E(G)

(ξr . ξt)

− 1
2

= (I I2(G))−
1
2 .

For detail concepts of topological indices on graphs we refer [10,15].

3. Main results

3.1. Zigzag Polyhex Nanotubes

Zigzag polyhex nantube is denoted as TUZC6 [p, q], where p is the number of hexagons in a row and
q is the number of hexagons in a column. A 2−Dimensional networks of TUZC6 [p, q] is shown in Figure
1. Let G (V (G) , E (G)) be the graph of a (p, q) dimensional zigzag polyhex nantube. It is easy to check that
|V (G)| = 2p (q + 1) and |E (G)| = p (3q + 2). In this structure there are two types of edges on the basis of
their degrees, so we can decompose the the set of edges as E (G) = E1 (G)

⋃
E2 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 3} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 3} .

It is easy to check that |E1 (G)| = 4p and |E2 (G)| = p (3q− 2) .
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Figure 1. 2−Dimensional networks of TUZC6 [p, q]

Theorem 4. Let G (V (G) , E (G)) be the graph of Zigzag polyhex nanotube TUZC6 [p, q]. Then the first multiplicative
Zagreb index for G is 2p(3q−2) × 3p(3q−2) × 54p.

Proof. The first multiplicative Zagreb index is:

I I∗1 (G) = ∏
rt∈E(G)

(ξr + ξt)

= ∏
rt∈E1(G)

(ξr + ξt)× ∏
rt∈E2(G)

(ξr + ξt)

= (2 + 3)|E1(G)| × (3 + 3)|E2(G)|

= 54p × 23pq−2p × 33pq−2p

= 2p(3q−2) × 3p(3q−2) × 54p.

Theorem 5. Let G (V (G) , E (G)) be the graph of Zigzag polyhex nanotube TUZC6 [p, q]. Then the second
multiplicative Zagreb index for G is 24p × 36pq.

Proof. The second multiplicative Zagreb index is:

I I2(G) = ∏
rt∈E(G)

(ξr . ξt)

= ∏
rt∈E1(G)

(ξr . ξt)× ∏
rt∈E2(G)

(ξr . ξt)

= (2 . 3)|E1(G)| × (3 . 3)|E2(G)|

= 24p × 34p × 36pq−4p

= 24p × 36pq.

Theorem 6. Let G (V (G) , E (G)) be the graph of Zigzag polyhex nanotube TUZC6 [p, q]. Then the multiplicative
atomic bond connectivity index for G is 2p(3q−4) × 3p(2−3q).

Proof. The multiplicative atomic bond connectivity index is:

ABCII(G) = ∏
rt∈E(G)

√
ξr + ξt − 2

ξr . ξt

= ∏
rt∈E1(G)

√
ξr + ξt − 2

ξr . ξt
× ∏

rt∈E2(G)

√
ξr + ξt − 2

ξr . ξt
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=

(
2 + 3− 2

2 . 3

) |E1(G)|
2
×
(

3 + 3− 2
3 . 3

) |E2(G)|
2

=

(
1
2

)2p
×
(

2
3

)p(3q−2)

= 2p(3q−4) × 3p(2−3q).

Theorem 7. Let G (V (G) , E (G)) be the graph of Zigzag polyhex nanotube TUZC6 [p, q]. Then the multiplicative
geometric arithmetic index for G is 26p × 32p × 5−4p.

Proof. The multiplicative geometric arithmetic index is:

G∗AII(G) = ∏
rt∈E(G)

(
2
√

ξr . ξt

ξr + ξt

)

= ∏
rt∈E1(G)

(
2
√

ξr . ξt

ξr + ξt

)
× ∏

rt∈E2(G)

(
2
√

ξr . ξt

ξr + ξt

)

=

(
2
√

2 . 3
2 + 3

)|E1(G)|

×
(

2
√

3 . 3
3 + 3

)|E2(G)|

=

(
2 . 2

1
2 . 3

1
2

5

)4p

×
(

2 . 3
3 + 3

)2pq−2p

= 26p × 32p × 5−4p.

3.2. Armchair Polyhex Nanotubes

Carbon polyhex nantubes are those nantubes in which the cylindrical surface is entirely made up of
hexagons. These type of carbon nantubes have very interesting thermal, electrical and mechanical properties,
actually these are very stabile in nature. A 2−dimensional networks of TUAC6 [p, q] is shown in Figure 2. Let

Figure 2. 2−dimensional networks of TUAC6 [p, q]

G (V (G) , E (G)) be the graph of Armchair polyhex nanotubes. It is easy to check that |V (G)| = 2p (q + 1)
and |E (G)| = p (3q + 2). In this structure there are three types of edges on the basis of their degrees, so we
can decompose the the set of edges as E (G) = E1 (G)

⋃
E2 (G)

⋃
E3 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 2} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 3} ,

E3 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 3} .
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It is easy to check that |E1 (G)| = p, |E2 (G)| = 2p and |E3 (G)| = p (3q− 1). From this edge parttion, we can
easily obtain the following results.

Theorem 8. Let G (V (G) , E (G)) be the graph of Armchair polyhex nanotube TUAC6 [p, q]. Then the first
multiplicative Zagreb index for G is 2p(1+3q) × 3p(3q−1) × 52p.

Theorem 9. Let G (V (G) , E (G)) be the graph of Armchair polyhex nanotube TUAC6 [p, q]. Then the second
multiplicative Zagreb index for G is 24p × 36pq.

Theorem 10. Let G (V (G) , E (G)) be the graph of Armchair polyhex nanotube TUAC6 [p, q]. Then the multiplicative
atomic bond connectivity index for G is

√
2p(6q−5) × 3p(1−3q).

Theorem 11. Let G (V (G) , E (G)) be the graph of Armchair polyhex nanotube TUAC6 [p, q]. Then the multiplicative
geometric arithmetic index for G is 23p × 3p × 5−2p.

3.3. Carbon Nanocone Networks

An n−dimensional one−pentagone nanocone is denoted as CNC5 [n], where n is the number of hexagons
layers encompassing the conical surface of nanocone and 5 denotes that there is a pentagon on the tip called
its core. A 6−dimensional one−pentagonal nanocone network is shown in the Figure 3. Now, |V (G)| =

Figure 3. 6−dimensional one−pentagonal nanocone network

5 (n + 1)2 and |E (G)| = 5
( 3

2 n2 + 5
2 n + 1

)
. In this structure there are following three types of edges: E (G) =

E1 (G)
⋃

E2 (G)
⋃

E3 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 2} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 3} ,

E3 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 3} .

It is easy to check that |E1 (G)| = 5, |E2 (G)| = 10n and |E3 (G)| = 5
(

3
2 n2 + 1

2 n
)

and following results can be
obtained immediately.

Theorem 12. Let G (V (G) , E (G)) be the graph of Carbon nanocone networks CNC5 [n]. Then the first multiplicative
Zagreb index for G is

√
215n2+5n+20 ×

√
315n2+5n × 510n.

Theorem 13. Let G (V (G) , E (G)) be the graph of be the graph of Carbon nanocone networks CNC5 [n]. Then the
second multiplicative Zagreb index for G is 210(n+1) × 315n(n+1).

Theorem 14. Let G (V (G) , E (G)) be the graph of Carbon nanocone networks CNC5 [n]. Then the multiplicative
atomic bond connectivity index for G is

√
25(3n2−n−1) ×

√
3−5n(3n+1).

Theorem 15. Let G (V (G) , E (G)) be the graph of Carbon nanocone networks CNC5 [n]. Then the multiplicative
geometric arithmetic index for G is 215n × 35n × 5−10n.
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3.4. Silicate Networks

Silicates are formed by mixing of metal carbonates or metal oxides with sand. Silicate network is denoted
as SLn, where n is the number of hexagons between the center and boundary of SLn. A 2−dimensional

Figure 4. 2−dimensional silicate network

silicate network is shown in Figure 4. Let G (V (G) , E (G)) be the graph of Silicate networks, then |V (G)| =
3n (5n + 1) and |E (G)| = 36n2. In this structure there are three types of edges on the basis of their degrees, so
we can decompose the the set of edges as E (G) = E1 (G)

⋃
E2 (G)

⋃
E3 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 3} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 6} ,

E3 (G) = {e = rt ∈ E (G) | ξr = 6, ξt = 6} .

Now, |E1 (G)| = 6n, |E2 (G)| = 6n (3n + 1) and |E3 (G)| = 6n (3n− 2), so we have following results.

Theorem 16. Let G (V (G) , E (G)) be the graph of Silicate network SLn. Then the first multiplicative Zagreb index for
G is 218n(2n−1) × 36n(9n+1).

Theorem 17. Let G (V (G) , E (G)) be the graph of Silicate network SLn. Then the second multiplicative Zagreb index
for G is 218n(3n−1) × 372n2

.

Theorem 18. Let G (V (G) , E (G)) be the graph of Silicate network SLn. Then the multiplicative atomic bond
connectivity index for G is 2−9n(2n−1) × 3−36n2 × 53n(3n−2) × 73n(3n+1).

Theorem 19. Let G (V (G) , E (G)) be the graph of Silicate network SLn. Then the multiplicative geometric arithmetic
index for G is 29n(3n+1) × 3−6n(3n+1).

3.5. Chain Silicate Networks

Chain is obtained by arranging n tetrahedral linearly. Chain silicate networks are denoted as CSn.

Figure 5. Chain silicate network

A chain silicate network is shown in Figure 5. Let G (V (G) , E (G)) be the graph of chain Silicate networks,
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then |V (G)| = 3n + 1 and |E (G)| = 6n. In this structure there are three types of edges on the basis of their
degrees, so we can decompose the the set of edges as E (G) = E1 (G)

⋃
E2 (G)

⋃
E3 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 3} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 6} ,

E3 (G) = {e = rt ∈ E (G) | ξr = 6, ξt = 6} .

It is easy to check that |E1 (G)| = n + 4, |E2 (G)| = 2 (2n− 1) and |E3 (G)| = n− 2.

Theorem 20. Let G (V (G) , E (G)) be the graph of Chain Silicate networks CSn. Then the first multiplicative Zagreb
index for G is 23n × 32(5n−1).

Theorem 21. Let G (V (G) , E (G)) be the graph of Chain Silicate networks CSn. Then the second multiplicative Zagreb
index for G is 26(n−1) × 312n.

Theorem 22. Let G (V (G) , E (G)) be the graph of Chain Silicate networks CSn. Then the multiplicative atomic bond
connectivity index for G is

√
2−3n+12 ×

√
3−12n ×

√
5n−2 × 72n−1.

Theorem 23. Let G (V (G) , E (G)) be the graph of Chain Silicate networks CSn. Then the multiplicative geometric
arithmetic index for G is 23(2n−1) × 3−2(2n−1).

3.6. Hexagonal Networks

It is known that there exist three regular plane tailings with composition of same kind of regular polygons
such as triangles, squares and hexagonal. Triangular tiling is used in the construction of hexagonal networks.
hexagonal network is denoted as HXn, where n is the number of vertices of in each side of hexagon.

Figure 6. 6−diminsional hexagonal network

A 6−dimensional hexagonal network is shown in Figure 6. Let G (V (G) , E (G)) be the graph of hexagonal
network, then |V (G)| = 3n2 − 3n + 1 and |E (G)| = 3

(
3n2 − 5n + 2

)
. In this structure there are five

type of edges on the basis of their degrees, so we can decompose the the set of edges as E (G) =

E1 (G)
⋃

E2 (G)
⋃

E3 (G)
⋃

E4 (G)
⋃

E5 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 4} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 6} ,

E3 (G) = {e = rt ∈ E (G) | ξr = 4, ξt = 4} ,

E4 (G) = {e = rt ∈ E (G) | ξr = 4, ξt = 6} ,

E5 (G) = {e = rt ∈ E (G) | ξr = 6, ξt = 6} .

It is easy to check that |E1 (G)| = 12, |E2 (G)| = 6, |E3 (G)| = 6 (n− 3), |E4 (G)| = 12 (n− 2) and |E5 (G)| =
3
(
3n2 − 11n + 10

)
.
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Theorem 24. Let G (V (G) , E (G)) be the graph of Hexagonal Network HXn. Then the first multiplicative Zagreb
index for G is 218(n2−2n−1) × 33(3n2−11n+14) × 512(n−2) × 712.

Theorem 25. Let G (V (G) , E (G)) be the graph of Hexagonal Network HXn. Then the second multiplicative Zagreb
index for G is 26(3n2−n−9) × 36(3n2−9n+10).

Theorem 26. Let G (V (G) , E (G)) be the graph of Hexagonal Network HXn. Then the multiplicative atomic bond
connectivity index for G is

√
2−3(3n2−5n+2) × 3−3(3n2−10n+13) ×

√
53(3n2−11n+14) × 73.

Theorem 27. Let G (V (G) , E (G)) be the graph of Hexagonal Network HXn. Then the multiplicative geometric
arithmetic index for G is 23(6n−1) × 36(n−2) × 5−12(n−2) × 7−12.

3.7. Oxide Networks

An oxide network is denoted as OXn, where n is the number of dimensions. A 5−diminsional oxide

Figure 7. 5−diminsional oxide network

network is shown in Figure 7. Let G (V (G) , E (G)) be the graph of oxide network, then |V (G)| = 9n2 + 3n
and |E (G)| = 18n2. In this structure there are two type of edges on the basis of their degrees, so we can
decompose the the set of edges such as E (G) = E1 (G)

⋃
E2 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 4} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 4, ξt = 4} .

It is easy to check that |E1 (G)| = 12n and |E2 (G)| = 6n (3n− 2).

Theorem 28. Let G (V (G) , E (G)) be the graph of Oxide Network OXn. Then the first multiplicative Zagreb index for
G is 26n(9n−4) × 312n.

Theorem 29. Let G (V (G) , E (G)) be the graph of Oxide Network OXn. Then the second multiplicative Zagreb index
for G is 212n(6n−1).

Theorem 30. Let G (V (G) , E (G)) be the graph of Oxide Network OXn. Then the multiplicative atomic bond
connectivity index for G is 2−3n(9n−4) × 33n(3n−2).

Theorem 31. Let G (V (G) , E (G)) be the graph of Oxide Network OXn. Then the multiplicative geometric arithmetic
index for G is 218n × 3−12n.

3.8. Honeycomb Networks

If we recursively use hexagonal tiling in a particular pattern, honeycomb networks are formed. A
honeycomb is denoted as HCn, where n is the number of hexagons between the central and boundary hexagon.
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Figure 8. 4−diminsional honeycomb network

A 4−dimensional honeycomb network is shown in Figure 8. Let G (V (G) , E (G)) be the graph of honeycomb
network, then |V (G)| = 6n2 and |E (G)| = 3n (3n− 1). In this structure there are three type of edges on the
basis of their degrees, so we can decompose the the set of edges as E (G) = E1 (G)

⋃
E2 (G)

⋃
E3 (G), where

E1 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 2} ,

E2 (G) = {e = rt ∈ E (G) | ξr = 2, ξt = 3} ,

E3 (G) = {e = rt ∈ E (G) | ξr = 3, ξt = 3} .

It is easy to check that |E1 (G)| = 6, |E2 (G)| = 12 (n− 1) and |E3 (G)| = 3
(
3n2 − 5n + 2

)
.

Theorem 32. Let G (V (G) , E (G)) be the graph of Honeycomb Network HCn. Then the first multiplicative Zagreb
index for G is 23(3n2−5n+6) × 33(3n2−5n+2) × 512(n−1).

Theorem 33. Let G (V (G) , E (G)) be the graph of Honeycomb Network HCn. Then the second multiplicative Zagreb
index for G is 212n × 318n(n−1).

Theorem 34. Let G (V (G) , E (G)) be the graph of Honeycomb Network HCn. Then the multiplicative atomic bond
connectivity index for G is 23(3n2−7n+3) × 3−3(3n2−5n+2).

Theorem 35. Let G (V (G) , E (G)) be the graph of Honeycomb Network HCn. Then the multiplicative geometric
arithmetic index for G is 218(n−1) × 36(n−1) × 5−12(n−1).

Remark 1. We can compute the following easily by using Propositions 2 and 3.

i SCII (TUZC6 [p, q]) = 2
p(2−3q)

2 × 3
−p(2−3q)

2 × 5−2p.
ii PCII (TUZC6 [p, q]) = 2−2p × 3−3pq.
iii SCII (TUAC6 [p, q]) =

√
2−p(1+3q) ×

√
3−p(3q−1) × 5−p.

iv PCII (TUAC6 [p, q]) = 2−2p × 3−3pq.
v SCII (CNC5 [n]) =

4√
2−5(3n2+n+4) × 4√3−5n(3n+1) × 5−5n.

vi PCII (CNC5 [n]) = 2−5(n+1) ×
√

3−15n(n+1).
vii SCII (SLn) = 2−9n(2n−1) × 3−3n(9n+1).
viii PCII (SLn) = 2−9n(3n−1) × 3−36n2

.
ix SCII (CSn) =

√
2−3n × 3−(5n−1).

x PCII (CSn) = 2−3(n−1) × 3−6n.
xi SCII (HXn) = 2−9(n2−2n−1) ×

√
3−3(3n2−11n+14) × 5−6(n−2) × 7−6.

xii PCII (HXn) = 2−3(3n2−n−9) × 3−3(3n2−9n+10).
xiii SCII (OXn) = 2−3n(9n−4) × 3−6n.
xiv PCII (OXn) = 2−6n(6n−1).
xv SCII (HCn) =

√
2−3(3n2−5n+6) ×

√
3−3(3n2−5n+2) × 5−6(n−1).

xvi PCII (HCn) = 2−6n × 3−9n(n−1).

Remark 2. We can compute the following easily by using Fact 1.
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i HII1 (TUZC6 [p, q]) = 22p(3q−2) × 32p(3q−2) × 58p.
ii HII2 (TUZC6 [p, q]) = 28p × 312pq.
iii MZα

1 (TUZC6 [p, q]) = 2αp(3q−2) × 3αp(3q−2) × 54αp.
iv MZα

2 (TUZC6 [p, q]) = 24αp × 36αpq.
v G∗Aα I I (TUZC6 [p, q]) = 26αp × 32αp × 5−4αp.
vi HII1 (TUAC6 [p, q]) = 22p(1+3q) × 32p(3q−1) × 54p.
vii HII2 (TUAC6 [p, q]) = 28p × 312pq.
viii MZα

1 (TUAC6 [p, q]) = 2αp(1+3q) × 3αp(3q−1) × 52αp.
ix MZα

2 (TUAC6 [p, q]) = 24αp × 36αpq.
x G∗Aα I I (TUAC6 [p, q]) = 23αp × 3αp × 5−2αp.
xi HII1 (CNC5 [n]) = 215n2+5n+20 × 315n2+5n × 520n.
xii HII2 (CNC5 [n]) = 220(n+1) × 330n(n+1).
xiii MZα

1 (CNC5 [n]) =
√

2α(15n2+5n+20) ×
√

3α(15n2+5n) × 510αn.
xiv MZα

2 (CNC5 [n]) = 210α(n+1) × 315αn(n+1).
xv G∗Aα I I (CNC5 [n]) = 215αn × 35αn × 5−10αn.
xvi HII1 (SLn) = 236n(2n−1) × 312n(9n+1).
xvii HII2 (SLn) = 236n(3n−1) × 3144n2

.
xviii MZα

1 (SLn) = 218αn(2n−1) × 36nα(9n+1).
xix MZα

2 (SLn) = 218αn(3n−1) × 372αn2
.

xx G∗Aα I I (SLn) = 29αn(3n+1) × 3−6αn(3n+1).
xxi HII1 (CSn) = 26n × 34(5n−1).
xxii HII2 (CSn) = 212(n−1) × 324n.
xxiii MZα

1 (CSn) = 23αn × 32α(5n−1).
xxiv MZα

2 (CSn) = 26α(n−1) × 312αn.
xxv G∗Aα I I (CSn) = 23α(2n−1) × 3−2α(2n−1).
xxvi HII1 (HXn) = 236(n2−2n−1) × 36(3n2−11n+14) × 524(n−2) × 724.
xxvii HII2 (HXn) = 212(3n2−n−9) × 312(3n2−9n+10).
xxviii MZα

1 (HXn) = 218α(n2−2n−1) × 33α(3n2−11n+14) × 512α(n−2) × 712α.
xxix MZα

2 (HXn) = 26α(3n2−n−9) × 36α(3n2−9n+10).
xxx G∗Aα I I (HXn) = 23α(6n−1) × 36α(n−2) × 5−12α(n−2) × 7−12α.
xxxi HII1 (OXn) = 212n(9n−4) × 324n.
xxxii HII2 (OXn) = 224n(6n−1).
xxxiii MZα

1 (OXn) = 26αn(9n−4) × 312αn.
xxxiv MZα

2 (OXn) = 212αn(6n−1).
xxxv G∗Aα I I (OXn) = 218αn × 3−12αn.
xxxvi HII1 (HCn) = 26(3n2−5n+6) × 36(3n2−5n+2) × 524(n−1).
xxxvii HII2 (HCn) = 224n × 336n(n−1).
xxxviii MZα

1 (HCn) = 23α(3n2−5n+6) × 33α(3n2−5n+2) × 512α(n−1).
xxxix MZα

2 (HCn) = 212αn × 318αn(n−1).
xxxx G∗Aα I I (HCn) = 218α(n−1) × 36α(n−1) × 5−12α(n−1).
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