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Abstract

A fixed point method is developed on a mesh for the solution of nonlinear Fredholm equation. First, the
problem is collocated at mesh points and a second order quadrature rule is used to approximate the nonlinear
integral. Under the assumption of nonexpansivity of self-map, we construct an Ishikawa iteration to linearize
the resulting system and approximate the solution at the mesh points. Four numerical examples are given
to verify the accuracy and practicability of the method. The results show that indeed the method converges
with second order of accuracy. One important lesson from this study is that the results support the claim, in
previous studies, that fixed point iterations can provide reliable means of solving several nonlinear problems.
It is recommended to extend this work to functional integral equations using higher order quadrature rules.
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1 Introduction

An equation in which the unknown solution appears under an integral is known as an integral equation. This
type of equations occur in several applications including physical sciences [1, 2, 3], economics and optimal control
[4, 5, 6, 7], epidemiology [8, 9], heat transfer [10], antenna wire modelling [11, 12], neuron transport [13] and
applied mathematical methods [14, 15]. More applications can be seen in [16, 17, 18, 19, 20].

For practical applications these equations are highly nonlinear and exact analytic solutions cannot be found.
This necessitates the development of numerical methods for nonlinear integral equations. In this study we
are interested in Fredhold equations which have applications in many areas including antenna wire modelling
[11, 12]. Specifically, we are interested in approximating the solution of the following problem:

u(x) = g(x) +

∫ b

y=a

k(x, y, u(y)) dy, x ∈ [a, b] ⊂ R, (1)

where C[a, b] 3 g : [a, b] → R, k : [a, b] × R × R → R and k is nonlinear in u and may or may not be separable
in x and y. Further, we assume that k is Lipschitz continuous with respect to its third argument, namely there
exists αk such that

|k(x, y, u)− k(x, y, v)| ≤ αk|u− v| ∀ u, v.

In general, closed form analytical solutions do not exist hence numerical techniques [21, 22, 23, 24, 25, 26] are
being developed to tackle the most general cases that may arise from practical applications. Linear Fredholm
integral equations have been discussed in [27, 28, 29] whereas the nonlinear Fredholm integral equation poses
more challenging problem. The use of Haar Wavelet method has been applied for nonlinear Fredholm equation
equations [30], however a brief study of the papers cited in [31] have shown various complications and its usage
not generally effective. In other studies [30, 32] investigated another approach for solving the nonlinear second
kind of Fredholm equations, while He’s homotopy perturbation method is used to find the solution of non-linear
Fredholm equations in [33].

The existence and uniqueness of solution of functional Volterra equations is investigated in [34]. The solution
was approximated by using nonlinear solver of Newton-Raphson type. The idea is extended to mixed Volterra-
Fredholm equations by Nwaigwe and Benedict [21]. Nwaigwe [35] further extended the work to nonlinear
functional mixed equations. Some remarkable contributions of the work of Nwaigwe [35] are the proof of
existence and uniqueness of solution without any contraction assumption, and the propounding of new Grownwall
inequalities which were used to prove the convergence of their proposed numerical scheme.

The challenge and downside of the above works are the use of nonlinear solvers which presents difficulties in
computation, programming and mathematical theories. Hence, Nwaigwe [36] adopted the idea of fixed point
iterations [15, 37] to propose a discrete Kranoselkij algorithm for functional Voltera equations without solving
nonlinear systems. The results show that such algorithms produce very accurate solutions and are fast. A very
recent study in using iterative methods to solve integral equations can be found in [38]. This has motivated us
to look into approaching problem (1) through the use of fixed point methods. Obviously, fixed point methods
have been widely investigated [39, 40, 41] and applied to variety of problems.

To the best of our knowledge, no study has investigated the combined use of collocation projection, trapezoid
rule and Ishikawa iteration to solve Fredholm integral equations; this is the gap that the current work fills.
Hence, the present study is to join the efforts of [15, 37, 36, 38], among others, to extend the application of fixed
point methods to solve nonlinear Fredholm equations. The paper is organized as follows. In section 2 we recall
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the Ishikawa iteration, formulate the numerical algorithm and give the pseudocode. The results are presented
and discussed in section 3 and we give the concluding remarks in section 4.

2 The Numerical Method

We start this section by recalling the fixed point method of Ishikawa [42].

Lemma 2.1 (see Ishikawa [42]). Let T be a contractive self-map, then the sequence, {un}n≥0, generated by

un+1(x) = (1− an)un(x) + anTvn(x) (2)

vn(x) = (1− bn)un(x) + bnTun(x) (3)

for a suitable u0, where (an) and (bn) are in (0, 1), converges to the fixed point of T .

In this work, we set an = bn = n−1/2 [42] and define the map T by

(Tu)(x) := g(x) +

∫ b

y=a

k(x, y, u(y)) dy. (4)

Hence, the Fredholm equation (1) can be written in the operator form:

u(x) = (Tu)(x), for x ∈ [a, b]. (5)

We assume that the function k is Lipchitz continuous in [a, b] with Lipchitz constant αk and

αk(b− a) ≤ 1. (6)

Notice the equality sign included in the inequality above, it is because the Ishikawa iteration, like the Krasnoselskij
iteration still converge for non-expansive maps.

Let N ∈ Z+ with N > 1. Define the h = b−a
N
, xi = a+ ih : i = 0, 1, · · · , N , and let un,i be the approximation of

u(xi) after n = 0, 1, 2, · · · , Ishikawa iterations. By collocating at the grid points, we have

u(xi) = (Tu)(xi), for i = 0, 1, · · · , N. (7)

Applying the Ishikawa iteration, we obtain

un+1,i = (1− an)un,i + anTvn,i, (8)

vn,i = (1− bn)un,i + bnTun,i, n ≥ 0, (9)

where

Tvn,i = g(xi) + In,i, where In,i =

∫ b

a

k(xi, y, un(y)) dy. (10)

The integral is approximated by the use of the quadrature rule (see [43, 21]):

Iu,n,i =
h

2

N−1∑
j=0

(k(xi, xj , un,j + k(xi, xj+1, un,j+1)) . (11)

The algorithm is initialize with

u0,i = g(xi) +
h

2

N−1∑
j=0

(k(xi, xj , g(xj) + k(xi, xj+1, g(xj+1)) ∀i. (12)
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2.1 Pseudocode for the Algorithm

(1) Define the grid, Ωh = {xi, xi = a+ ih, h = b−a
N
,Z 3 N > 1}.

(2) For each i compute u0,i using (12).

(3) Set n = 0:

(4) For each i, do the following:

(a) Evaluate the integral using (11).

(b) Compute Tun,i using (10).

(c) Compute un+1,i using (8).

(d) If i < N , set i = i+ 1 and go to step 4a, otherwise go to the next step.

(e) If ‖un+1 − un‖ < TOL output un+1 and stop. Otherwise, set n = n+ 1 and go to step 4.

3 Numerical Experiments

We now present some examples to demonstrate the accuracy and practicality of the proposed method. The
results are computed on 16 Gigabyte RAM quadcore machine running on a Linux operating system. These
examples are derived via the method of Manufactured solutions [44, 45, 46, 47, 48, 49, 50].

Example 1

The first example is the problem:

u(x) =
−x
6

+ (x2 + 1)cos−1(x2)

1 + x2
+

∫ 1

0

xy3cos(u)

1 + x2
dy,

The exact solution of this problem is u(x) = cos−1(x2). The numerical solution of this problem is computed on
a sequence of grids and their errors and experimental order of convergence (EOC) computed. The CPU time
to compute all the EOCs is also recorded. The results are recorded in Table 1, it can be seen that proposed
method is convergent and has second order of accuracy which is the theoretically expected order of accuracy.
The CPU time taken to complete the EOC calculations of this problem 1 is 42.97808265686035.

Further, the numerical solution computed on different grids with 5, 10, 30 and 100 mesh points are plotted and
compared with the exact solution in Fig. 1. We see that even with 30 mesh points the computed solution is
already very accurate.

Table 1. Results for Problem 1, N = number of sub-intervals

N Error EOC

2 0.16333911635262954 -1

4 0.021646255808007164 2.915680921934721

8 0.003967379363779777 2.4478592401930115

16 0.0008612525713960623 2.203678065343175

32 0.00020136113788714327 2.0966511109303756

64 4.872781396353387e-05 2.046967867635893

128 1.1988354706990445e-05 2.0231118260012755

256 2.9733981802698706e-06 2.0114490968584344

512 7.404221460394211e-07 2.005692721549541

1024 1.8474197853446395e-07 2.002836322731808
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Fig. 1. Plot of exact solution and numerical solution for problem 1

Table 2. Results for problem 2, N = number of sub-intervals

N Error EOC

2 0.05637482608295197 -1

4 0.0037625705430824885 3.905260541833301

8 0.00061178604074974 2.620619536587277

16 0.00012800706701432407 2.2568037282629883

32 2.9747578815797482e-05 2.1053793047664726

64 7.1905011685968745e-06 2.0486080176014885

128 1.7687111649733467e-06 2.0233938566428216

256 4.386726273342134e-07 2.0114818797252187

512 1.0923665838546981e-07 2.0056875996706625

1024 2.7255633971989823e-08 2.0028307037917417

Example 2

The second example is

u(x) = x2
(
x− π

√
3

54

)
+

∫ 1

0

x2y2u

1 + u2 + u4
dy

The exact solution is u(x) = x3

The solution of this problem is computed on different grids and the results are tabulated in Table 2. Just like
in example 1, we can see that the proposed method converges to the exact solution at the expected order of
convergence, 2. The CPU time taken to complete problem 2 is 22.412165880203247. Fig. 2. presents the plots
of the exact solution and the numerical solution computed of different grids. We also see that the numerical
solution converges very fast to the exact solution.
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Fig. 2. Plot of exact solution and numerical solution for problem 2

Table 3. Results for problem 3, N = number of sub-intervals

N Error EOC

2 0.0033401995652793115 -1

4 0.0003850850798006178 3.1166851694545703

8 7.08155916803177e-05 2.4430382838362124

16 1.542482707894699e-05 2.1988127217211035

32 3.611565474237466e-06 2.0945580856224573

64 8.744631218027266e-07 2.046154876652523

128 2.151870582833837e-07 2.02280622917233

256 5.337573516506211e-08 2.011335373573074

512 1.329181165132809e-08 2.00564628078104

1024 3.316511398843147e-09 2.0027993653605405

Example 3

Our third problem is

u(x) =− x2

12
+ sin(x)− sin(2)

48
− 1

54
− cos(3)

432

+
cos(1)

48
+

1

12

∫ 1

0

(
x2 + y +

u3

3
− u2

)
dy.

The exact solution is u(x) = sin(x). Table 3. tabulates the results computed for this problem using the proposed
method on a sequence of grids. We also see that the numerical solution converges to the exact solution. This is
also seen in Fig. 3. which displays the plots of the exact solution and numerical solution on several grids. The
CPU time taken to compute the EOCs for problem 3 is 23.757.
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Fig. 3. Plot of Exact solution and numerical solution for problem 3

Example 4

Our last example is

u(x) = e
(x−1)

2 − 1

2
ex−e2 + e−x +

∫ 1

0

uex−y−u2

dy.

The exact solution is u(x) = e−x.

The results for this problem are displayed in Table 4. and Fig. 4. One can also see that the numerical solution
agrees with the exact solution as we refine the mesh. The CPU time taken to compute the EOCs for this problem
is 41.409.

Table 4. Results for problem 4, N = number of sub-intervals

N Error EOC

2 0.03112031852815711 -1

4 0.005963255741055273 2.383684712094301

8 0.0011218506673921214 2.410219562070775

16 0.0002452206271312818 2.193728403766116

32 5.7458015915723415e-05 2.0935002576668724

64 1.3914595630604154e-05 2.045909192594972

128 3.4242276554241613e-06 2.0227484576080528

256 8.49363330335251e-07 2.0113248911773134

512 2.115096261467997e-07 2.005658500148919

1024 5.277262404845828e-08 2.0028616977181466
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Fig. 4. Plot of exact solution and numerical solution for problem 4

4 Conclusion

A numerical method based on Ishikawa iteration has been proposed and implemented for solving nonlinear
Fredholm integral equations with non-separable kernels. The algorithm is verified with four test problems with
known exact solutions. The results show that

(i) the scheme converges to the exact solution at the correct theoretical order of convergence,

(ii) the scheme is fast and easy to program, and

(iii) the quality of solution does not degrade as the mesh is refined.

We, therefore, conclude that provided the hypotheses of fixed point theorems are not violated, iterative schemes
like the Ishikawa iteration can lead to a very reliable method for solving nonlinear integral equations. We
recommended a further study to extend this work to functional integral equations using higher order quadrature
rules.
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