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Abstract 
Schizophrenia and psychosis are psychiatric condition whose neural mechanisms are yet incom- 
pletely known, and for which pharmacological treatment is too often ineffective in a growing clini- 
cal cohort. Recently, dendritic morphological changes in arborization and dendritic spine density 
in limbic regions has been reported in postmortem tissue from schizophrenic patients and in ani- 
mal models of schizophrenia, suggesting that the use of medication improving synaptogenesis may 
be beneficial as additional treatment of psychotic patients. Cerebrolysin (Cbl) is a drug available 
for clinical with active neuropeptides fragments that mimics the action of endogenous neuro- 
trophic factors such as BDNF, GDNF, CNTF and NGF, which improves the integrity of the neuronal 
circuits as well as cognitive and behavioral performance by exerting a neuroprotective effect and 
promoting the generation of new functional synapses. Recent work from our laboratory has 
shown that Cbl ameliorates synaptic and dendritic pathology in animal models of schizophrenia by 
increasing synaptic density and restoring neuronal cytoarchitecture. This neuroprotective effect 
improves the integrity of the neuronal circuits and improves cognitive and behavioral perfor- 
mance. Importantly, Cbl treatment seems to be safe when used in combination with neuroleptics 
such as risperidone. The present article analyzes the potential of Cbl in the treatment of neurode- 
velopmental disease, and reviews the current literature on the effects of Cbl in in vivo animal 
models of neurodevelopmental disorders like schizophrenia. 
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1. Introduction 
Schizophrenia is a complex disorder of thought, perception and social interactions affecting 1% of the world 
population. This severe mental disorder starts at early adulthood during the synaptic pruning and myelination 
process [1] with an individual combination of positive, negative, and affective symptoms as well as cognitive 
deficits, while the severity of these symptoms can change over time depending on the disease stage [1]. Various 
theories have been advanced to explain schizophrenia; amongst them, the altered communication between tem- 
poral-prefrontal circuits theory postulates an altered synaptic communications between temporal regions as hip- 
pocampus and basolateral amygdala (BLA) with the prefrontal cortex (PFC) in mediating some of the behavioral 
manifestations of this disorder. In recent years, clinical imaging and pathological studies have provided strong 
evidence for structural and molecular changes in the PFC, BLA and hippocampal formation (HF) of schizoph- 
renic brains that are suggestive of abnormalities in brain development and plasticity. It has been suggested that 
neuropathologies associated with schizophrenia may result from developmental abnormalities in BLA, hippo- 
campus and/or PFC efferents that alter normal maturation and functionality of limbic system. In addition, post- 
mortem studies of schizophrenic patients have demonstrated a significant reduction in the dendritic arbor and 
dendritic spine density [2] [3], whereas, molecular studies have demonstrated that neurotrophins such as brain- 
derived neurotrophic factor (BDNF) are altered in cortical regions of schizophrenic patients [4]. Moreover, a re- 
cent report [5] has shown that serum levels of another neurotrophic factor, neural grow factor (NGF), are altered 
in the schizophrenic patients [5]. Interestingly, animal studies clearly indicate a role of hippocampal, BLA and 
PFC inputs in modulating nucleus accumbens (NAcc) and mesolimbic dopaminergic activity. For example, re- 
cent studies with neonatal lesions of the ventral hippocampus in rats have revealed a postpubertal emergence of 
heightened sensitivity of the mesolimbic dopaminergic system. In addition, these animals have also shown 
changes in dendritic arborization and dendritic spine density at the level of the prefrontal cortex and nucleus 
[6]-[11]. Furthermore, bilateral neonatal ventral hippocampal lesion (NVHL) also caused a reduction in BDNF 
levels in the PFC at postpubertal age [12]. These findings suggest that schizophrenia is a disorder of brain con- 
nectivity with reduced synaptic communication at level of the PFC, BLA and hippocampus. 

Cerebrolysin (Cbl) improves the integrity of the neuronal circuits as well as cognitive and behavioral perfor- 
mance [10] [11] [13]-[15] by exerting a neuroprotective effect and promoting the generation of new functional 
synapses. These findings induced us to decide to analyze the potential of Cbl in the treatment of neurodevelop- 
mental disease, such as schizophrenia, and review the current literature on its possible mechanisms of action in 
studies using in vivo animal models of neurodevelopmental disorders such as schizophrenia. 

2. Prefrontal Cortex Neuropathology in Schizophrenia 
The PFC participates in the regulation of attention, inhibition, cognitive control, motivation, and emotion 
through connections with posterior cortical and subcortical structures such as the hippocampus, the amygdala, 
and the nucleus accumbens (for review sees Arnsten et al. [16]). Interestingly, patients with schizophrenia exhi- 
bit profound deficits in PFC functions that are a fundamental component of this illness (for review see Arnsten 
et al. [16]. Multiple lines of evidence suggest that the PFC is a primary site of dysfunction in schizophrenia [16]. 
For example, Glantz and Lewis [17] demonstrated reduced levels of synaptophysin (SYP) inmunoreactivity in 
the PFC of schizophrenic patients. SYP protein has been shown to be critical for regulating neurotransmitter re-
lease and synaptic plasticity, a process thought to be disrupted in schizophrenia. However, recent reports of 
postmortem brain studies from schizophrenic patients have shown that not only the PFC, but also other brain re- 
gions such as the medial temporal cortex, the visual association cortex, the hippocampus, and the thalamus also 
exhibit a decreased expression in the levels of [17]-[32], suggestive of gross synaptic alterations in the brain of 
schizophrenic patients. 

Consistent with these findings, schizophrenia has been postulated to derive from a neurodevelopmental aber- 
ration that interferes with cortical neuronal maturation and abnormal network architecture at adolescence [33]. 
Interestingly, in animal models, chronic stress such as social isolation or movement restriction may alter the 
synaptic connectivity at the level of PFC and hippocampus [7] [34]-[37]. For all these reasons, exposure to stress 
may be a key factor in the precipitation of schizophrenic psychosis in adolescence and in the subsequent ex- 
acerbation of its symptoms [38]-[41], suggesting that the environment can and does interact with an already 
vulnerable circuitry to aggravate cortical deterioration. 

The findings of abnormal placement of pre-alpha cell clusters, heterotopic displacement of neurons, and ab- 
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normal orientation of pyramidal cells in the entorhinal cortex and hippocampus of post-mortem schizophrenic 
brain are indicative of developmental aberrations in neuronal migration [42]-[45]. 

It is interesting to note that decreases in PFC and hippocampal immunoreactivity to markers for GABaergic 
interneurons-particularly the calcium binding protein parvalbumin but also the modulatory peptide, somatostatin 
[46]-[50] are one of the most consistent findings in post-mortem schizophrenic brains. A growing number of 
reports suggest that PFC GABAergic interneurons are critical in the development of the normal puberty 
[51]-[53]. 

It is known that brain axonal tracts are myelinated progressively across the lifespan in a region- and func- 
tion-specific manner. Interestingly, post-mortem brain studies from patients with schizophrenia have implicated 
a myelin dysfunction in this disorder. In this framework, it is tempting to speculate that PFC myelination deficits 
[54] [55] and structural abnormalities in white matter detected in post-mortem brains from schizophrenic pa- 
tients [56] may be caused by a developmental alteration of the myelination process that occurs within the brain 
in a region- and function-specific fashion during a lifespan. These observations together with a reduction in 
mRNA [55] and protein levels [45] [57] of myelin basic protein (MBP) in schizophrenia, supports the brain 
communication disorder hypothesis with emphasis in PFC functions. 

The laminar distribution of NADPH-diaphorase-positive neurons, in the temporal and frontal cortices, sug- 
gests unusual neuronal migration [58]. Interestingly, since the finding by Weinberger et al. [59] that lateral ven- 
tricular size in schizophrenic patients is bigger than control, more than 300 peer-reviewed articles have deli- 
neated the subtle neuroanatomic abnormalities in this mental illness (for review sees Glahn et al. [60]. Consi- 
derable evidence from neuroimaging and epidemiological studies has now accumulated in support of a neuro- 
developmental hypothesis of schizophrenia. Magnetic Resonance Image (MRI) studies have detected cortical 
volume reduction over time in patients with schizophrenia [61]. Furthermore, neural densities in the schizoph- 
renic frontal cortex and hippocampus are reported to be decreased without concomitant gliosis [62] [63], al- 
though evidence to the contrary has also been reported [64]. 

Despite an impressive array of evidence implicating abnormal neurodevelopment in schizophrenia, few stu- 
dies have provided conclusive evidence with respect to the biochemical substrates of such abnormalities. How- 
ever, reports of a reduced expression of synapsin, microtubule associated proteins MAP2, DARPP-32, the den- 
dritic protein neurogranin, and synaptophysin in the PFC of post-mortem schizophrenic brains provide molecu- 
lar indication of disturbed synapse development and plasticity [65] [66]. 

3. Hippocampus and Amygdala in Schizophrenia 
Similar to PFC, hippocampal and amygdala abnormalities have been reported in schizophrenia [67]-[72]. Struc- 
tural and functional neuroimaging studies now provide strong evidence that hippocampal and amygdala volume 
are reduced in schizophrenia [73]-[79]. In addition, the extent of the volume loss has been correlated with posi- 
tive, negative, and cognitive symptoms [80] [81]. Consistent with this idea such synaptic alterations in schi- 
zophrenia may—at least in part—be a cause for brain impaired (long-range) connectivity in this disorder. Spe- 
cifically, post-mortem studies of schizophrenic patients show a reduced dendritic spine density in the subiculum 
andin the CA3 area [82] [83], as well as reduced spine size on CA3 pyramidal neurons [83]. Moreover, a lower 
number of synaptic contacts formed by individual mossy fibers tracts on CA3 pyramidal neurons have been re- 
ported in schizophrenia [84]. Interestingly, several reports show that cerebral blood flow of the schizophrenic 
patients is higher at hippocampus level [85] [86]. Furthermore, Schobel et al. [87] have shown that hippocampal 
basal blood flow volume correlates with both positive and negative symptoms in the schizophrenia. 

In addition, in the post-mortem schizophrenic hippocampus and PFC the polysialylated form of the neural cell 
adhesion molecule (PSA-NCAM)—which is expressed specifically in PFC and hippocampal interneurons [88] 
is altered [89]-[91]. Interestingly, several reports show a dysfunction of GABAergic inhibition and a consequent 
imbalance between excitation and inhibition in the cerebral cortex in schizophrenia animal models [92]-[96]. In 
addition, various isoforms of NCAM, expressed in a developmentally regulated manner, play a crucial role in 
the migration of neural cells as well as in the guidance of growing axons, and, in the adult brain, are implicated 
in maintaining synaptic plasticity in structures such as the hippocampus, where a persistent expression of the 
embryonic form of the molecule is observed [90]. 

Consistent with these findings the cell pattern and orientation of cells in the hippocampus [97], and the den- 
dritic arborization and density of dendritic spines in subicular pyramidal neurons from post-mortem schizoph- 
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renic patients are disrupted [98]. All these data are indicative of a dysfunctional hippocampal and amygdala cir-
cuitry in schizophrenia. 

4. Neurotrophic-Like Factor Such as Cerebrolysin in Neuropsychiatric Disorders 
Cerebrolysin (Cbl) is the only drug available for clinical use containing active fragments of important neuro- 
trophic factors [99]. The active fragments are small neuropeptides which cross the blood-brain barrier (BBB) 
and mimic the action of endogenous neurotrophic factors such as BDNF, GDNF, CNTF and NGF and others 
[100] [101]. The neurotrophic action of the Cbl helps in the survival of neurons and prevents the cell death [102]. 
In addition, several reports suggest that Cbl induces neuroprotection when there is a damage of the brain and al- 
so induce neurogenesis. These two actions (neuroprotection and neurogenesis) maintain [99] [102]. These may 
be some of the reasons why Cbl is effective in the treatment of neurodegenerative diseases like multiple sclero-
sis, Parkinson’s disease, Alzheimer’s disease, dementia, and acute or chronic stroke [99]. In addition, recent re-
ports suggest that Cbl increases synaptic communication by increasing dendritic arborization as well as the 
number of dendritic spines in cortical regions such as PFC and hippocampus [10] [11] [13] [14]. Moreover, Cbl 
is also effective in the treatment of neurodevelopmental disorder such as autism and schizophrenia [103]-[106]. 

5. Neonatal Ventral Hippocampus Lesion and Cerebrolysin 
Rats with bilateral excitotoxic neonatal ventral hippocampal lesion (nVHL) have been widely accepted as a 
neurodevelopmental model of schizophrenia-related behaviors [107]-[110]. These rats exhibit behavioral and 
neurochemical changes that manifest mainly after puberty [109]-[111]. Behavioral and neurochemical changes 
include locomotor hyperresponsiveness to stress [7] [107] [108] [112], deficits in social interaction [113] [114], 
sensorimotor gating [115] [116], spatial learning and working memory problems [112] [117], decreased atten- 
tion [116], low levels of brain-derived neurotrophic factor (BDNF) [118] [119] and nerve growth factor-induci- 
ble B (NGFB) [120]. Together with the behavioral and neurochemical alterations, neural morphological changes 
have been reported in this model [6] [7] [9]-[11]. Post-pubertally, nVHLs induce atrophy of pyramidal neurons 
of the prefrontal cortex (PFC), basolateral amygdala (BLA), and medium spiny neurons of the nucleus accum- 
bens (Nacc) [6] [7] [9] [10]. Our recent report suggests that Cbl promotes recovery of dendritic and neuronal 
damage of the pyramidal neurons of the PFC and medium spiny neurons of the Nacc in post-pubertal nVHL rats 
[10]. In addition, behavioral changes such as locomotor hyperresponsiveness to stress and deficits in social inte- 
raction and sensorimotor gating were in part also recovered by Cbl treatment in nVH-lesion animals [10]. As we 
mention before, several reports have suggested that the BLA is dysfunctional in schizophrenic patients [121] and 
our group recently reported that nVHL animals show dendritic atrophy and reduced spinogenesis in the BLA at 
adult age [9] [10]. However, Cbl does not produce any amelioration after dendritic alterations of the BLA pyra- 
midal neurons following nVHL in rats [11]. Another finding in the nVHL schizophrenia model is the reduction 
in the number of neurons in the PFC and BLA, measured by stereological analysis [10] [11]. Interestingly, Cbl 
treatment ameliorates the cells loss observed in the PFC and BLA of the post-puberal nVHL animals [10] [11]. 
All these data suggest that Cbl has a potential use in the treatment of schizophrenia. 

6. Neurotropic-Like Factor in Schizophrenia 
Neurotrophins are a large family of dimeric polypeptides that promote the growth and the differentiation of de- 
veloping neurons in the central and peripheral nervous systems as well as the survival of neuronal cells in re- 
sponse to stress. The fact that schizophrenia is a neurodevelopmental disorder with reduced connectivity amount 
limbic regions induced by synaptic alterations [68] explains the growing interest in the role of neurotrophins in 
the pathophysiology of schizophrenia. Several recent reports have shown a reduced plasma and serum level of 
neural grow factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in drug-naïve as well as medi-
cated schizophrenic patients compared to healthy controls. In addition low serum BDNF levels were associated 
with reduction in hippocampal volume at the onset of schizophrenia [122]. Furthermore, a recent report has 
shown significantly higher levels of methylation of BDNF promoter in patients with schizophrenia compared to 
controls [123]. Consistently with these findings, risperidone-atypical antipsychotic drugs—elevates BDNF— 
but not NGF-levels in schizophrenic patients [124]. All these data support the hypothesis that schizophrenia is a 
neurodevelopmental disorder with impaired synaptic communication between the hippocampus and the amyg-
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dala on one hand, and the PFC on the other hand. Accordingly, drugs with neurotrophic-like effects that increase 
BDNF and NGF levels result in better synaptic communication with beneficial effects in schizophrenia. 

Cbl has recently been used in the therapy of the schizophrenic symptoms [106], where it was found to im- 
prove cognitive and memory functions in patients dominated by negative symptoms. Interestingly, a recent re- 
port suggests that low BDNF is associated with cognitive impairment in chronic patients with schizophrenia 
[125]. In addition, a growing body of evidence shows that oxidative stress damage may relate to the range of 
cognitive deficits associated with schizophrenia [126]. Interestingly, oxidative stress is the condition arising 
from imbalance between toxic oxygen species and antioxidant system. Brain tissue is highly vulnerable to oxida- 
tive stress damage due to relatively low levels of endogenous antioxidants, high metal content and levels of po- 
lyunsaturated fatty acids, with elevated oxygen [127]-[129]. In addition, protective mechanism includes various 
antioxidant enzymes such as superoxide dismutase (SOD) and gluthatione peroxidase (GPX) [126] [130]. In the 
schizophrenic brains, a dysfunction in the protective mechanisms of oxidative stress has been suggested [126] 
[130]. An increase in oxidative stress together with a decline in membrane essential polyunsaturated fatty acids 
leads to enhanced lipid peroxidation [131]. In addition, antioxidant enzymes such as superoxide dismutase 
(SOD), glutathion peroxidase (GpX) and catalase (CAT) are often measured for quantifying antioxidant defense 
in schizophrenia [132] with conflicting results. Some studies report increased antioxidant defense in schizophre- 
nia, whereas others report opposite conclusion [126] [130]. We measured the two biomarkers of oxidative stress, 
serum superoxide dismutase (SOD) activity and concentration of nitrites as indicator of the nitric oxide (NO) 
levels in the psychotic schizophrenic patients before and after 4 weeks with Cbl (10 mL/day) on top of the stan- 
dard haloperidol treatment. Interestingly, the NO levels and SOD activity were reduced in the schizophrenic pa- 
tients with Cbl treatment (data unpublished). In agreement with our results, another report suggests that Cbl in- 
duces a decrease on the CAT and SOD levels [133]. 

7. Activity of Cerebrolysin on Neuroimmune Antigens 
A new hypothesis associates neurodevelopmental conditions including schizophrenia but also autism spectrum 
disorder (ASD) with alterations of the immune system response, either during fetal development [134] or as 
sensitization of the response to stressors during adulthood [135]-[137]. These considerations suggest the possi- 
bility that among the actions of the peptidic mixture making up Cbl is the decrease of a neuroinflammation as- 
sociated with neuropsychiatric disease. While—at the current state—this possibility is only theoretical, it is 
worth to consider the potential of this avenue of research. Among the few exploratory studies on the effects of 
Cbl on the innate or adaptive immune system are an early report that in vitro treatment of mouse bone marrow 
with Cbl stimulated the response to Thy-1 (or CD90) [138], which is a marker for neuronal axons, and a second 
clinical study on children, which showed that 1-month intramuscular treatment with Cbl results in increased ac- 
tivation of CD19+ cells, with “simultaneous normalization of IgA and IgG” immunoglobulins and normalization 
of the otherwise altered levels of CD25+ and HLA DR in lymphocytes, achieving the parameters of the control 
group, together with activation of T-cells [139]. The same results were repeated and widened in a later study on 
a cohort of ADHD children affected by recurrent acute viral respiratory infections with parallel alterations in 
systemic blood immune parameters [139]. A more recent study identified cytoprotective properties of Cbl to- 
wards both B and T lymphocytes, favoring the survival of immunocompetent cells, and possibly stimulating the 
formation of immune memory B cells [140]. While it is premature to even formulate a hypothesis on whether 
any avenue of action of Cbl occurs through an interaction with the immune system, the efficacy of this peptide 
mixture in the treatment of conditions with an obvious immune component is worth being further investigated. 

8. Conclusion 
A growing body of evidence shows that schizophrenia is a disorder of brain connectivity with reduced synaptic 
communication at level of the PFC, BLA and hippocampus. This disconnection is expressed at puberty when 
exposure to stress, which may be a key factor in the precipitation of schizophrenic psychosis in adolescence to-
gether with the subsequent exacerbation of its symptoms [38]-[41]. Therefore, the interaction between stresses 
with a vulnerable limbic circuitry exacerbates cortical dysfunction. Consistent with these data, neurotrophins, a 
family of polypeptides or small proteins that exert robust effects on neuronal survival, synapse stabilization, and 
synaptic function [141], may play a critical role in this interaction. These considerations suggest the possibility 
that Cbl a drug available for clinical with active neuropeptides fragments that mimics the action of endogenous 
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neurotrophic factors such as BDNF, GDNF, CNTF and NGF and others [100] [101], may help in the treatment 
of the schizophrenia. 
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BDNF: Brain-Derived Neurotrophic Factor 
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Cbl: Cerebrolysin 
DA: Dopamine 
EEG: Electroencephalography 
Hc: Hippocampus 
MRI: Magnetic Resonance Imaging 
MBP: Myelin Basic Protein 
NVHL: Neonatal Ventral Hippocampus Lesion 
NAcc: Nucleus Accumbens 
NGF: Neural Grow Factor 
PD: Postnatal Day 
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